Sensors, limit switches and pressure switches Easy Series

Catalogue

Simply easy!
Limit switches
■ Selection guide 4

- General 5
\square General 5
\square Applications examples 5
\square Contact block operation 6
\square Contact ratings 7
\square Setting up and mounting advice 8
- European standards 9
\square Degrees of protection provided by enclosures 9
- American standards 10
\square Degrees of protection provided by enclosures 10
- Selection considerations 11
\square Operating heads 11
- For light to medium duty applications, XCJ 12
\square Presentation, general characteristics 12
\square References, characteristics, dimensions 13
\square References, characteristics 14
\square Dimensions 15
- For medium duty applications, XCE 16
\square Presentation, general characteristics 16
\square References, characteristics, dimensions 17
\square References, characteristics 18
\square Dimensions 20
- Compact design, plastic, XCKN 22
\square References, characteristics 22
\square Dimensions 24
Inductive proximity sensors
■ Selection guide 26
- General presentation 28
■ References 29
- Characteristics, connections, setting-up 30
- Dimensions, curves 31
■ References 32
\square Three-wire DC, solid-state output 32
Accessories 34
- Characteristics, schemes 35
- Setting-up, dimensions 36
- Curves 37
Photo-electric sensors
- General 38
- Presentation 39
- Miniature design, plastic, 52
Three-wire DC, solid-state output
\square References 52
- Characteristics 56
\square Schemes 57
\square Curves 58
\square Description, dimensions 62
■ Design 18, plastic, Three-wire DC, solid-state output 66
\square References 66
\square Characteristics, schemes, curves, dimensions 67
- Design 18, metal, Three-wire DC, solid-state output 68
\square References 68
\square Characteristics, schemes, curves, dimensions 69
Electronic pressure sensors
- Presentation 70
- Functions 71
- References 72
\square Compact metal body, 316L stainless steel fluid entry 72With analogue output. Sizes in bar
\square Separate parts 85
Electromechanical pressure switches
- Presentation 86
- Characteristics 81
- References, characteristics 88
\square For power circuits, FTG Range 88
\square For power circuits, FSG Range 89
\square For power circuits, FYG Range 90
- Dimensions 91
Safety detection solutions
- XCSPA and XCSTA 92
\square General presentation 92
- References 93
\square Dimensions 94
\square Setting-up, schemes 96
- XY2C 97
\square Presentation 97
\square General 98
\square Characteristics 99
- References 101
\square XY2CJ range 101
- XY2C range 102
- Dimensions 104

Selection guide
Limit switches
XC range

Light duty:
injection moulding
assembly, metal working,
packaging.

Zinc alloy
(cover: plastic)
IEC 60947-5-1
(\in, CCC
$28 \times 64 \times 25$
Linear, rotary or multidirectional

Compact format EN 50047 Plastic,
1 cable entry

Plastic, double insulated
CENELEC EN 50047
UL, CSA, CCC, EAC
$31 \times 65 \times 30$
Linear movement (plunger) Rotary movement (lever) Rotary movement, multidirectional

Limit switches

XC range

General

Electromechanical detection

Limit switches are used in all automated installations and also in a wide variety of applications, due to the numerous advantages inherent to their technology.
They transmit data to the logic processing system regarding:

- presence/absence,
- passage,

■ positioning,
end of travel

Simple to install switches, offering many advantages

- From an electrical viewpoint:

- galvanic separation of circuits,
a models suitable for low power switching, combined with good electrical durability,
\square very good short-circuit withstand in coordination with appropriate fuses,
- total immunity to electromagnetic interference,
\square high rated operational voltage.
- From a mechanical viewpoint:
\square N/C contacts with positive opening operation,
\square high resistance to the different ambient conditions encountered in industry,
\square high repeat accuracy, up to 0.01 mm on the tripping points,
simple visible operation.

Mechanical endurance

- Major factors affecting the mechanical endurance of a limit switch:
\square operating speed and frequency,
- operating travel (percentage of total travel),
- cam angle,

ㅁ environnment (presence of abrasive dust, corrosive substances, etc).

Roller plunger

Rotary style head

End plunger

Multidirectional head

Limit switches

XC range
Contact block operation

Linear movement (plunger)

Rotary movement

Example: 1 N/C +1 N/O break before make

Linear movement (plunger)

Rotary movement

Snap action contacts	
- Linear movement (plunger)	
European terminology	Terminology according to JIS C 4508
A Maximum travel	TT Total travel
B Tripping travel	-
C Resetting travel	-
D Differential travel	-
P Point from which positive opening is assured	-
A-B No specific term	OT Over Travel
1 Resetting point	RP Release Position
2 Tripping point	OP Operation Position
0 No specific term	FP Free Position
- No specific term	TTP Total Travel Position
■ Rotary movement	
European terminology	Terminology according to JIS C 4508
A Maximum travel	TT Total travel
B Tripping travel	PT Pre-Travel
C Resetting travel	-
D Differential travel	MD Movement Differential
P Point from which positive opening is assured	-
A-B No specific term	OT Over Travel
1 Resetting point	RP Release Position
2 Tripping point	OP Operation Position
0 No specific term	FP Free Position
- No specific term	TTP Total Travel Position

Slow break contacts
■ Linear movement (plunger) European terminology
A Maximum travel Terminology according to JIS C 4508 B Tripping and Resetting travel of N/C contact - C Tripping and Resetting travel of N/O contact - P Point from which positive opening is assured - $\mathbf{1}$ Tripping and Resetting point of N/C contact - $\mathbf{2}$ Tripping and Resetting point of N/O contact - $\mathbf{0}$ No specific term FP - No specee Posific term TTP Total Travel Position $\mathbf{R o t a r y}$ movement Terminology according to JIS C 4508 European terminology TT Total travel A Maximum travel - B Tripping and Resetting travel of N/C contact - C Tripping and Resetting travel of N/O contact - \mathbf{P} Point from which positive opening is assured - $\mathbf{1}$ Tripping and Resetting point of N/C contact - $\mathbf{2}$ Tripping and Resetting point of N/O contact - $\mathbf{0}$ No specific term FP - No specific term TTP Total Travel Position

Limit switches

XC range

Contact ratings

Kind of current	Category	Typical application	$\begin{aligned} & \mathrm{T}_{0,95}(\mathrm{DC})(1) \\ & \cos \varphi(\mathrm{AC}) \end{aligned}$
Alternating current	AC-12	Control of resistive loads and solid state loads with isolation by opto couplers	0.9
	AC-13	Control of solid state loads with transformer isolation	0.65
	AC-14	Control of small electromagnetic loads $(\leqslant 72 \mathrm{VA})$	0.3
	AC-15	Control of electromagnetic loads (> 72 VA)	0.3
Direct current	DC-12	Control of resistive loads and solid state loads with isolation by opto couplers	1 ms
	DC-13	Control of electromagnets	300 ms maximum
	DC-14	Control of electromagnetic loads having economy resistors in circuit	15 ms

(1) $\boldsymbol{T}_{0,95}=$ time to reach 95% of the steady state current.

Designation	Utilization category	Conventional therm. current	Rated operational current le at rated operating voltage Ue					
			120 V	240 V	380 V	480 V	500 V	600 V
A150	AC-15	10 A	6 A	-	-	-	-	-
A300	AC-15	10 A	6 A	3 A	-	-	-	-
A600	AC-15	10 A	6 A	3 A	1.9 A	1.5A	1.4 A	1.2 A
B150	AC-15	5 A	3 A	-	-	-	-	-
B300	AC-15	5 A	3 A	1.5A	-	-	-	-
B600	AC-15	5 A	3 A	1.5A	0.95 A	0.75A	0.72 A	0.6A
C150	AC-15	2.5 A	1.5 A	-	-	-	-	-
C300	AC-15	2.5 A	1.5 A	0.75 A	-	-	-	-
C600	AC-15	2.5 A	1.5 A	0.75 A	0.47 A	0.375A	0.35 A	0.3A
D150	AC-14	1.0 A	0.6 A	-	-	-	-	-
D300	AC-14	1.0 A	0.6 A	0.3 A	-	-	-	-
E150	AC-14	0.5A	0.3A	-	-	-	-	-

| Designa-
 tion | Utilization Conventional
 category | Rated operational current le at rated operating voltage Ue | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | DC-13 | 10 A | 2.2 A | - | - | - | - |
| N300 | DC-13 | 10 A | 2.2 A | 1.1 A | - | - | - |
| N600 | DC-13 | 10 A | 2.2 A | 1.1 A | 0.63 A | 0.55 A | 0.4 A |
| P150 | DC-13 | 5 A | 1.1 A | - | - | - | - |
| P300 | DC-13 | 5 A | 1.1 A | 0.55 A | - | - | - |
| P600 | DC-13 | 5 A | 1.1 A | 0.55 A | 0.31 A | 0.27 A | 0.2 A |
| Q150 | DC-13 | 2.5 A | 0.55 A | - | - | - | - |
| Q300 | DC-13 | 2.5 A | 0.55 A | 0.27 A | - | - | - |
| Q600 | DC-13 | 2.5 A | 0.55 A | 0.27 A | 0.15 A | 0.13 A | 0.1 A |
| R150 | DC-13 | 1.0 A | 0.22 A | - | - | - | - |
| R300 | DC-13 | 1.0 A | 0.22 A | 0.1 A | - | - | - |

Limit switches

XC range
Setting up and mounting advice

Setting up

Reverse mounting of the operating lever (for limit switches XCE)

Sweep of connecting cable

Limit switches

XC range

Degrees of protection provided by enclosures

European standards

Degrees of protection against the penetration of solid bodies, water and personnel
access to live parts
The European standard EN 60529 dated October 1991, IEC publication 529 (2nd edition -
November 1989), defines a coding system (IP code) for indicating the degree of protection
provided by electrical equipment enclosures against accidental direct contact with live parts and
against the ingress of solid foreign objects or water.
This standard does not apply to protection against the risk of explosion or conditions such as
humidity, corrosive gasses, fungi or vermin.

IPoe code
■ The IP code comprises 2 characteristic numerals (e.g. IP 55)

- Any characteristic numeral which is unspecified is replaced by an X (e.g. IP XX).

American standards

Limit switches

XC range
Degrees of protection provided by enclosures

American standards

Standard UL 50 - Table 6.1 - Enclosures types, defines a coding system for indicating the protection provided by electrical equipment enclosures against the ingress of solid foreign objets and fluids.

Type	Intended use and description
1	Indoor use primarily to provide a degree of protection against limited amounts of falling dirt.
2	Indoor use primarily to provide a degree of protection against limited amounts of falling water and dirt.
3	Outdoor use primarily to provide a degree of protection against rain, sleet, wind blown dust and damage from external ice formation.
3R	Outdoor use primarily to provide a degree of protection against rain, sleet, and damage from external ice formation.
3 S	Outdoor use primarily to provide a degree of protection against rain, sleet, wind blown dust and provide for operation of external mechanisms when ice laden.
4	Indoor or outdoor use primarily to provide a degree of protection against rain, sleet, wind blown dust and provide for operation of external mechanisms when ice laden.
4X	Indoor or outdoor use primarily to provide a degree of protection against corrosion, wind blown dust and rain, splashing water, hose-directed water, and damage from external ice formation.
5	Indoor use primarily to provide a degree of protection against setting airbone dust, falling dirt, and dripping noncorrosive liquids.
6	Indoor or outdoor use primarily to provide a degree of protection against hose-directed water, and the entry of water during occasional temporary submersion at a limited depth and damage from external ice formation.
6P	Indoor or outdoor use primarily to provide a degree of protection against hose-directed water, the entry of water during prolonged submersion at a limited depth and damage from external ice formation.
12, 12K	Indoor use primarily to provide a degree of protection against limited circulation dust, falling dirt, and dripping noncorrosive liquids.
13	Indoor use primarily to provide a degree of protection against dust, spraying of water, oil and noncorrosive coolant.

Limit switches

XC range

Operating heads

5 points to consider...				
Direction of operation	Operating speed (1)	Positivity (2)	Risk of overtravel damage	Target type
Plunger style				
\square	$0.5 \mathrm{~m} / \mathrm{s}$	Yes	Very high	
	$0.85 \mathrm{~m} / \mathrm{s}$	Yes	High	

(1) These values are indicative only. For precise information relating to a particular device, refer to the appropriate technical characteristics.
(2) Only when combined with a positive opening contact.
(3) CW = clockwise, CCW = counter clockwise

Presentation, general characteristics

Limit switches

XC range
For light to medium duty applications, XCJ

XCJ (single-pole contact 1 C/O form C)
With head for linear movement (plunger) operators, fixing by head or body

Page 13
With head for linear movement (lever plunger) operators, fixing by body

Environnement	
Conforming to standards	IEC 60947-5-1
Certifications	¢ $¢$, CCC
Ambient air temperature	For operation: $-25 \ldots+70^{\circ} \mathrm{C}$, for storage: $-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance Conforming to IEC 60068-2-6	$10 \ldots .55 \mathrm{~Hz}$ XCJ110, XCJ102 and XCJ103C: 3.0 mm double amplitude XCJ125, XCJ126 and XCJ127C: 1.5 mm double amplitude XCJ121 and XCJ128C: 0.7 mm double amplitude
Shock resistance Conforming to IEC 60068-2-27	$10 \mathrm{gn}, 11 \mathrm{~ms}$, in the free position
Degree of protection Conforming to IEC 60529	$\begin{aligned} & \text { IP } 40 \\ & \text { IK } 04 \\ & \hline \end{aligned}$
Materials	Body: plastic, head: metal
Mechanical durability	10×10^{6} operations
Cable entry	Flexible rubber cable gland suitable for cable Ø 8.5... 10.5 mm
Head mounting	Torque range for XCE110C, XCJ102C and XCJ103C: 2.9...4.9 N.m / 25.66...43.66 Ib-in
Body mounting	Mounting torque range (M4 screws): $1.2 \ldots 1.5 \mathrm{N.m} / 10.62 . .13 .27$ N.m
Contact block characteristics	
Rated operational characteristics	$\begin{aligned} & \sim A C(U e=240 \mathrm{~V}, \mathrm{le}=10 \mathrm{~A}), \text { Ith }=10 \mathrm{~A} \\ & \sim \mathrm{DC}(U \mathrm{Ce}=220 \mathrm{~V}, \mathrm{le}=0.3 \mathrm{~A}) \end{aligned}$
Insulation resistance	$>100 \mathrm{~m} \Omega$ at $=-500 \mathrm{~V}$
Dielectric withstand voltage	$1000 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ for 1 minute between non-continuous terminals $2000 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ between current carrying and non-current carrying parts and between each terminal and ground. Double isolation, CE Class II conforming to IEC 60947-5-1
Operating frequency	120 operations per minute
Electrical endurance	$>8 \times 10^{5}$ operations ($\sim 220 \mathrm{~V}, 10 \mathrm{~A}$, P.F. $=1$)
Contact resistance	$\leqslant 25 \mathrm{~m} \Omega$
Cabling	M3.5 screw terminals (use cable lug with flexible cable) Torque range: 0.8...1.2 N.m / 7.08... 10.62 lb -in

References, characteristics, dimensions

Limit switches

XC range

For light to medium duty applications, XCJ

References, characteristics

Limit switches

XC range
For light to medium duty applications, XCJ

Type of operating head					
	Plunger (fixing by body)				
Type of operator	Short flat lever plunger	Long flat lever plunger	Short flat roller lever plunger	Long flat roller lever plunger	Short flat roller lever plunger, one way operation
References					
Single pole 1 C/O (form C)	XCJ125C	XCJ126C	XCJ127C	XCJ128C	XCJ121C
Weight (kg)	0.052	0.053	0.057	0.057	0.059
Complementary characteristics not shown under general characteristics (page 12)					
Switch actuation	On end		By $30^{\circ} \mathrm{cam}$		
Operating force (maxi.)	1.9 N	1.3 N	2.3 N	1.6 N	2.4 N
Release force (mini.)	0.59 N	0.39 N	0.78 N	0.49 N	0.98 N
Operating frequency	120 operations per minute				
Actuation speed	$0.01 \mathrm{~mm} / \mathrm{s} \ldots . .50 \mathrm{~cm} / \mathrm{s}$ (at pin plunger)				
Mechanical durability	10×10^{6} operations				
Cabling	M3.5 screw terminals (use cable lug with flexible cable) Torque range: 0.8...1.2 N.m / 7.08...10.62 lb-in				
Operating diagrams					
Type of actuation					
Operating diagrams Contact operation \square contact closed contact open					

Dimensions

Limit switches

XC range
For light to medium duty applications, XCJ

Dimensions in mm

XCJ125C
XCJ126C

(2) 16.5 max.
(3) $2 \times \varnothing 4.2$
(1) 13.5 max.
(2) 16.5 max.
(3) $2 \times \varnothing 4.2$

XCJ127C
XCJ128C

(1) 6.5 max.
(2) 16.5 max.
(3) $2 \times \varnothing 4.2$
(1) 11 max.
(2) 16.5 max.
(3) $2 \times \varnothing 4.2$

XCJ121C

[^0]
Presentation, general characteristics

Limit switches
 XC range
 For medium duty applications, XCE

XCE (1 NO + 1 NC form Za)
With head for linear movement (plunger) operators

Page 17
With head for rotary movement (lever) operators

Page 18

With head for multi-directional operators

Page 19

Environment

Conforming to standards		IEC 60947-5-1
Certifications		c, CCC
Ambient air temperature		For operation : $-25 \ldots+70^{\circ} \mathrm{C}$, for storage: $-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance	Conforming to IEC 60068-2-6	$10 . . .55 \mathrm{~Hz}, 3 \mathrm{~mm}$ double amplitude
Shock resistance	Conforming to IEC 60068-2-27	$30 \mathrm{gn}, 11 \mathrm{~ms}$, in the free position
Degree of protection	Conforming to IEC 60529	IP 65
Materials		Body and head: metal, cover: plastic
Mechanical durability		10×10^{6} operations
Cable entry		Flexible rubber cable gland suitable for cable $\varnothing 6 . . .9 \mathrm{~mm}$
Tightening torques	Body (M4 screws)	2.4...3.0 N.m / 21.24...26.55 lb-in
	Cover	0.5...0.6 N.m / 4.42...5.31 Ib-in
	Head (rotary type)	0.3...0.4 N.m / 2.65...3.54 Ib-in
	Roller lever (rotary type)	2.4...3.0 N.m / 21.24...26.55 Ib-in

Contact block characteristics

Rated operational characteristics	$\sim \mathrm{AC}(\mathrm{Ue}=240 \mathrm{~V}, \mathrm{le}=3 \mathrm{~A}, \mathrm{lth}=10 \mathrm{~A})$; --. $\mathrm{DC}(\mathrm{Ue}=220 \mathrm{~V}$, le = 0.3 A $)$
Rated insulation voltage	Ui=300V, pollution degree 3 complies with IEC 60947
Insulation resistance	$>100 \mathrm{~m} \Omega$ at 500 V
Operating frequency	120 operations per minute
Electrical endurance	8×10^{5} operations
Contact resistance	$\leqslant 25 \mathrm{~m} \Omega$
Cabling	Screw terminals, torque range $0.6 \ldots 1.1 \mathrm{~N} . \mathrm{m} / 5.31 . . .8 .85 \mathrm{lb}$-in Maximum clamping capacity $0.75 \ldots 1.5 \mathrm{~mm}^{2}$ per terminal

References, characteristics, dimensions

Limit switches

XC range

For medium duty applications, XCE

Type of operating head				
		Plunger		
Type of operator		Steel end plunger	Steel roller plunger for lateral cam movement	Steel roller plunger for traverse cam movement
References (1)				
$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & (\text { form Za) } \end{aligned}$		XCE110C	XCE102C	XCE103C
Weigth (kg)		0.110	0.126	0.126

(1) All products are supplied in individual packaging. They are also available in a bulk pack of 10 products. To order the bulk packed versions, add the suffix TQ at the end of product reference. Example XCE110CTQ.
Obviously the indivisible order quantity for this version is 10.
Complementary characteristics not shown under general characteristics (page 16)

Switch actuation	On end		
Operating force (maxi.)	9 N		
Release force (mini.)	1.5 N		
Operating frequency	120 operations per minute		
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$		
Minimum actuation speed	$5 \mathrm{~mm} / \mathrm{s}$		
Mechanical durability	10×10^{6} operations (For XCE102C and XCE103C, actuation by 30° cam: 1 million operations)		
Cabling	Flexible rubber cable gland suitable for cable Ø $6 \ldots . .9 \mathrm{~mm}$		
Operating diagrams			
Type of actuation			
Operating diagrams Contact operation \square contact closed \square contact open			
Dimensions in mm			
XCE110C	XCE102C XCE103C		

(1) 2 holes M5 tapped 7 in depth
(2) 2 M5 tapped holes.
(3) Stainless steel roller $\varnothing 12.5 \times 3.8$.

(1) 2 holes M5 tapped 7 in depth.
 (2) 2 M5 tapped holes.

(3) Stainless steel plunger $\varnothing 7$.
(1) 2 holes M5 tapped 7 in depth.
(2) 2 M5 tapped holes.
(3) Stainless steel roller $\varnothing 12.5 \times 3.8$.

References, characteristics

Limit switches

XC range
For medium duty applications, XCE

Type of operating head

Rotary

[^1]
Limit switches

XC range

For medium duty applications, XCE

Type of operating head
Multi-directional

Type of operator		"Cat's whisker"	Spring rod lever with thermoplastic end		
References (1)					
1 NO + 1 NC (form Za)		XCE106C	XCE181C		
Weigth (kg)		0.109	0.108		
Complementary characteristics not shown under general characteristics (page 16)					
Switch actuation		By any moving part			
Operating force (maxi.)		1.5 N			
Release force (mini.)		0.04 N			
Operating frequency		120 operations per minute			
Maximum actuation speed		$1 \mathrm{~m} / \mathrm{s}$			
Mechanical durability		4×10^{6} operations			
Cabling		Flexible rubber cable gland suitable for cable Ø $6 \ldots 9 \mathrm{~mm}$ Maximum clamping capacity $1.5 \mathrm{~mm}^{2}$ per terminal			
Operating diagrams					
Type of actuation					
Operating diagrams Contact operation \square contact closed \square contact open					

(1) All products are supplied in individual packaging. They are also available in a bulk pack of 10 products. To order the bulk packed versions, add the suffix TQ at the end of product reference. Example XCE181CTQ.
Obviously the indivisible order quantity for this version is 10.

Dimensions in mm

XCE118C, XCE119C

(1) 2 holes M5 tapped 7 in depth.
(2) 2 M5 tapped holes.
(3) Nylon roller Ø 8×7 (roller can be rotated and locked in any position through 360°).

XCE145C, XCE146C

XCE154C

(1) 2 holes M5 tapped 7 in depth.
(2) 2 M5 tapped holes.

Limit switches

XC range
For medium duty applications, XCE

Presentation, general characteristics

Limit switches
 XC Basic range
 Compact design, plastic, XCKN

XCKN

with 1 cable entry
Conforminct to CENELEC EN 50047)

With head for linear movement (plunger)

Page 23
With head for rotary movement (lever) or multi-directional

Page 24
Environment characteristics

Conformity to standards	Products	IEC 60947-5-1, EN 60947-5-1, UL 508, CSA C22-2 n ${ }^{\circ} 14$, EAC
	Machine assemblies	IEC 60204-1, EN 60204-1
Product certifications		UL, CSA, CCC
Protective treatment	Version	Standard: "TC"
Ambient air temperature	For operation	$-25 \ldots+70^{\circ} \mathrm{C}$
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance	Conforming to IEC 60068-2-6	
Shock resistance	Conforming to IEC 60068-2-27	50 gn (11 ms) except XCKN2•49•๑ and XCKN••39: 15 gn , XCKN2p08•e: 20 gn and XCKN2•45•e: 35 gn
Electric shock protection		Class II conforming to IEC 61140 and NF C 20030
Degree of protection		IP 65 conforming to IEC 60529; IK 04 conforming to IEC 62262
Cable entry		Depending on model: tapped entry for ISO M20 $\times 1.5$ or Pg 11 cable gland, ISO M 16×1.5 cable gland or PF $1 / 2$ (G 1/2)
Materials	Bodies	Plastic
	Heads	Plastic
Contact block characteristics		
Rated operational characteristics		$\sim \mathrm{AC}-15 ; \mathrm{A} 300$ ($\mathrm{Ue}=240 \mathrm{~V}, \mathrm{le}=3 \mathrm{~A}$); l the $=10 \mathrm{~A}$
		-- DC-13; R300 (Ue = 250 V , le = 0.1 A), conforming to IEC 60947-5-1 Appendix A, EN 60947-5-1
Rated insulation voltage	2-pole contact	$\mathrm{Ui}=500 \mathrm{~V}$ degree of pollution 3 conforming to IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Rated impulse withstand voltage	2-pole contact	U imp $=6 \mathrm{kV}$ conforming to IEC 60947-1, IEC 60664
Positive operation		NC contacts with positive opening operation conforming to IEC 60947-5-1 Appendix K, EN 60947-5-1
Short-circuit protection		10 A cartridge fuse type gG (gl)
Connection	Screw clamp terminals	Clamping capacity, min: $1 \times 0.34 \mathrm{~mm} 2$, max: $2 \times 1.5 \mathrm{~mm}^{2}$

References, characteristics

Limit switches

XC Basic range
 Compact design, plastic, XCKN
 Complete switches with 1 cable entry

Type of head		Plunger (fixing by the body)				
Type of operator		Metal end plunger	Plastic roller plunger for lateral cam approach	Plastic roller plunger for traverse cam approach	Thermoplastic roller lever plunger, horizontal actuation in 1 direction	Thermoplastic roller lever plunger, vertical actuation in 1 direction
Sold and packed in lots of		20	20	20	20	20
References of complete switches with 1 ISO M20 x 1.5 cable entry						
2-pole NC + snap action		XCKN2110P20	XCKN2102P20	XCKN2103P20	XCKN2121P20	XCKN2127P20
2-pole NC + break befor	e, slow break	XCKN2510P20	XCKN2502P20	XCKN2503P20		XCKN2527P20
$\begin{array}{l\|l\|l} \ulcorner & \Sigma & \begin{array}{l} \text { 2-pole NC + } \\ \\ \sim \end{array} \\ \sim & \text { slow break } \\ \sim & & \end{array}$	multaneous,	XCKN2710P20	-	-	XCKN2721P20	-
$$		XCKN2910P20	XCKN2902P20	XCKN2903P20	XCKN2921P20	-
Weight (kg)		0.065	0.065	0.065	0.070	0.070
Contact operation		\square closed (A) (B) = cam displacement \square open $(P)=$ positive opening point			$\Theta N C$ contact with positive opening operation	
Characteristics						
Switch actuation		On end	By $30^{\circ} \mathrm{cam}$			
Type of actuation						
Maximum actuation speed		$0.5 \mathrm{~m} / \mathrm{s}$	$0.3 \mathrm{~m} / \mathrm{s}$		$1 \mathrm{~m} / \mathrm{s}$	
Mechanical durability (in millions of operating cycles)		10				
Minimum force or torque	For tripping	15 N	12 N		6 N	
	For positive opening	30 N	20 N		10 N	
Cable entry		1 entry tapped M20 $\times 1.5 \mathrm{~mm}$ for ISO cable gland, clamping capacity 7 to 13 mm				
References of complete switches with 1 Pg 11 cable entry						

References of complete switches with 1 Pg 11 cable entry
For complete switches with 1 Pg 11 cable entry replace P20 by G11.
Example: XCKN2110P20 becomes XCKN2110G11.

Other cable entries

For complete switches with ISO M16 x 1.5 or PF $1 / 2$ (G 1/2) cable entry, please consult our Customer Care Centre.

Other contacts

For complete switches with 2-pole contacts:
NO + NC make before break, slow break,
NO + NO simultaneous, slow break, please consult our Customer Care Centre.
For complete switches with 3-pole contacts:
$\mathrm{NC}+\mathrm{NO}+\mathrm{NO}$ snap action,
$\mathrm{NC}+\mathrm{NC}+\mathrm{NO}$ snap action
$\mathrm{NC}+\mathrm{NC}+\mathrm{NO}$ break before make, slow break,
NC + NO + NO break before make, slow break, please consult our Customer Care Centre.

References, characteristics

Limit switches

XC Basic range
Compact design, plastic, XCKN
Complete switches with 1 cable entry

Type of head		Rotary (fixing by the body)				Multi-directional	
Type of operator		Thermoplastic roller lever	Variable length thermoplastic roller lever	Thermoplastic roller lever, $\varnothing 50 \mathrm{~mm}$	Variable length thermoplastic roller lever, $\varnothing 50 \mathrm{~mm}$	Spring rod	"Cat's whisker"
Sold and packed in lots of		20	20	20	20	20	20
References of complete switches with 1 ISO M20 x 1.5 cable entry							
			XCKN2145P20				XCKN2106P20
	$\mathrm{C}+\mathrm{NO}$ fore make, ak	XCKN2518P20	XCKN2545P20	XCKN2539P20	XCKN2549P20	-	-
$\begin{array}{l\|l\|l} \sim & \bar{N} \\ \sim & \begin{array}{ll} \text { 2-pole } \\ \text { slow } \end{array} \\ \sim & N \end{array}$	$\mathrm{C}+\mathrm{NC}$ simultaneous,		-	-	-	-	-
$\begin{array}{l\|l\|l} F & \Gamma & \text { 2-pol } \\ & \sim & \text { snap } \\ \sim & \approx & \end{array}$	$\mathrm{C}+\mathrm{NC}$ ion			-		-	-
Weight (kg)		0.085	0.090	0.110	0.115	0.085	0.075
Contact operation		\square closed		(A) (B) = cam displacement $(P)=$ positive opening point		$\Theta N C$ contact with positive opening operation	
Characteristics							
Switch actuation		By $30^{\circ} \mathrm{cam}$				By any moving part	
Type of actuation							
Maximum actuation speed		$1.5 \mathrm{~m} / \mathrm{s}$				$1 \mathrm{~m} / \mathrm{s}$ (any direction)	
Mechanical durability		10 million operating cycles				5 million operating cycles	
Minimum force or torque	For tripping	0.1 N.m				0.13 N.m	
	For positive opening	0.15 N.m				-	
Cable entry		1 entry tapped M20 1.5 mm for ISO cable gland, clamping capacity 7 to 13 mm					
References of complete switches with 1 Pg 11 cable entry							
For complete switches with 1 Pg 11 cable entry replace P20 by G11. Example: XCKN2118P20 becomes XCKN2118G11.							

Other cable entries

For complete switches with ISO M16 $\times 1.5$ or PF $1 / 2$ (G 1/2) cable entry, please consult our Customer Care Centre.

Other contacts

For complete switches with 2-pole contacts:
$\mathrm{NO}+\mathrm{NC}$ make before break, slow break,
NO + NO simultaneous, slow break, please consult our Customer Care Centre.
For complete switches with 3-pole contacts:
$\mathrm{NC}+\mathrm{NO}+\mathrm{NO}$ snap action,
$\mathrm{NC}+\mathrm{NC}+\mathrm{NO}$ snap action,
$\mathrm{NC}+\mathrm{NC}+\mathrm{NO}$ break before make, slow break,
$\mathrm{NC}+\mathrm{NO}+\mathrm{NO}$ break before make, slow break, please consult our Customer Care Centre.

Dimensions

Limit switches

XC Basic range

Compact design, plastic, XCKN
Complete switches with 1 cable entry

Selection guide

Inductive proximity sensors
XS range
Basic

Sensing distance $\mathbf{S n}(\mathrm{mm})$
Diameter
Power supply
Function
Output
Length (mm) for pre-cabled versions
Connection

Operating temperature

Degree of protection

Type reference

Pages

2.5	4	8	15
M8	M12	M18	M30

--- 3 -wire, $12 \ldots 24 \mathrm{~V}$

$-25 \ldots+70^{\circ} \mathrm{C}$

IP 65 and IP 67

(1) Sensors with an increased range are sold individually or are available in bulk packs on request. Please contact our Customer Care Centre.
(2) Available in lengths of 3, 5 and 7 m , depending on model. Please contact our Customer Care Centre.

Inductive proximity sensors
XS range
Basic, cylindrical, increased range, flush mountable Three-wire DC, solid-state output

XS range
 Basic
 increased range

XS range Basic inductive proximity sensors are used to detect metal objects without physical contact.
They are flush mountable as standard and suitable for all metal environments since they ensure a maximum sensing distance, even if there is a metal background.

These sensors are rugged and compact making them suitable for a variety of applications, including:

- Material handling
- Mobile equipment
- Packing
- Machine tools
- Escalators

They are available with the following connections:

- Pre-cabled, with 2 or 5 m cable, depending on the model
- M8 or M12 connector, for easy installation and maintenance

Excellent resistance to electromagnetic interference

> Sensors compliant with standard IEC 60947-5-2
$>$ Tested for use in very harsh environments, beyond standard requirements
$>$ Specifically, application tests conducted in an environment prone to interference, in the vicinity of variable speed drives or motors, demonstrated very good EMC immunity

3-wire … technology with NO or NC, PNP or NPN output

Advantages of 3-wire technology
These sensors comprise 2 wires for the DC supply and a third wire for the output signal.
> PNP output: switching on the positive voltage load
> NPN output: switching on the negative voltage load
$>$ Protection against reverse polarity, overloads and short circuits
$>$ No residual current
$>$ Low voltage drop

Sold in lots

Depending on the model, XS range Basic sensors are sold:
$>$ Individually
$>$ In various bulk quantities for ease of unpacking and less waste (1)
(1) Please contact our Customer Care Centre.

Inductive proximity sensors

XS range
Basic，cylindrical，increased range，flush mountable
Three－wire DC，solid－state output

XS112BHeeLe

XS112BHeeM12

XS118BH•eM12

XS130BHeeL

XS130BH••M12

XSZB1•e
XZCPV

Sensors，3－wire－－12．．． 24 V					
Sensing distance （Sn）mm	Function	Output	Connection	Reference	Weight kg
$\varnothing 8$ ，threaded M8 x 1					
2.5	NO	PNP	Pre－cabled（L＝ 2 m ）	XS108BHPAL2	0.070
			M8 connector	XS108BHPAM8	0.030
			M12 connector	XS108BHPAM12	0.050
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS108BHNAL2	0.070
			M8 connector	XS108BHNAM8	0.030
	N／C	PNP	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS108BHPBL2	0.070
			M8 connector	XS108BHPBM8	0.030
			M12 connector	XS108BHPBM12	0.050
Ø 12，threaded M12 $\times 1$					
4	NO	PNP	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS112BHPAL2	0.080
			Pre－cabled（L＝ 5 m ）	XS112BHPAL5	0.150
			M12 connector	XS112BHPAM12	0.025
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS112BHNAL2	0.080
			M12 connector	XS112BHNAM12	0.025
	N／C	PNP	Pre－cabled（L＝ 2 m ）	XS112BHPBL2	0.080
			M12 connector	XS112BHPBM12	0.025
		NPN	Pre－cabled（L＝ 2 m ）	XS112BHNBL2	0.080
			M12 connector	XS112BHNBM12	0.025
$\varnothing 18$, threaded M18 $\times 1$					
8	NO	PNP	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS118BHPAL2	0.105
			Pre－cabled（ $\mathrm{L}=5 \mathrm{~m}$ ）	XS118BHPAL5	0.175
			M12 connector	XS118BHPAM12	0.035
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS118BHNAL2	0.105
			Pre－cabled（L＝5 m）	XS118BHNAL5	0.175
			M12 connector	XS118BHNAM12	0.035
	N／C	PNP	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS118BHPBL2	0.105
			M12 connector	XS118BHPBM12	0.035
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS118BHNBL2	0.105
			M12 connector	XS118BHNBM12	0.035
Ø 30，threaded M30 $\times 1.5$					
15	NO	PNP	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS130BHPAL2	0.165
			Pre－cabled（ $\mathrm{L}=5 \mathrm{~m}$ ）	XS130BHPAL5	0.235
			M12 connector	XS130BHPAM12	0.075
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS130BHNAL2	0.165
			M12 connector	XS130BHNAM12	0.075
	N／C	PNP	Pre－cabled（L＝ 2 m ）	XS130BHPBL2	0.165
			M12 connector	XS130BHPBM12	0.075
		NPN	Pre－cabled（ $\mathrm{L}=2 \mathrm{~m}$ ）	XS130BHNBL2	0.165
			M12 connector	XS130BHNBM12	0.075
Fixing accessories					
Description			For use with sensors	Reference	Weight kg
Fixing clamps			$\varnothing 8$	XSZB108	0.006
			$\varnothing 12$	XSZB112	0.006
			Ø18	XSZB118	0.010
			Ø30	XSZB130	0.020
Connection accessories（1）					
Description			Cable length m	Reference	Weight kg
Pre－wired，straight， female connectors M12 connectors 4－pin，PVC cable			5	XZCPV1141L5	0.210
			10	XZCPV1141L10	0.390
Pre－wired，straight， female connectors M8 connectors 3－pin，PVC cable			5	XZCPV0566L5	0.210
			10	XZCPV0566L10	0.390
（1）For other connection accessories，visit our website：www．tesensors．com					

Characteristics, connections, setting-up

Inductive proximity sensors

XS range

Basic, cylindrical, increased range, flush mountable Three-wire DC, solid-state output

Characteristics

Sensor type			XS100BHP•L• XS100BHNoL•	XS1••BHN॰M•
Product certifications			UL, CSA, C€	
Connection	Pre-cabled		Cable length: 2 or 5 m , depending on model	-
	Connector		-	M8 or M12 connector, depending on model
Operating zone (1)	$\varnothing 8$	mm	0... 2	
	Ø12	mm	0...3.2	
	$\varnothing 18$	mm	0...6.4	
	Ø 30	mm	0... 12	
Differential travel		\%	1... 15 of effective sensing distance (Sr)	
Degree of protection	Conforming to IEC 60529		IP 65 and IP 67	
Storage temperature		${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	
Operating temperature		${ }^{\circ} \mathrm{C}$	-25...+70	
Materials	Case		Nickel plated brass	
	Cable		PVC (number and c.s.a. of wires: $3 \times 0.14 \mathrm{~mm}^{2}$)	
Vibration resistance	Conforming to IEC 60068-2-6		25 gn , amplitude $\pm 2 \mathrm{~mm}$ ($\mathrm{f}=10$ to 55 Hz)	
Shock resistance	Conforming to IEC 60068-2-27		50 gn , duration 11 ms	
Output state indication			Yellow LED, on rear	Yellow LED, 2 viewing ports at 180°
Rated supply voltage		V	--- 12... 24 with protection against reverse polarity	
Voltage limits (including ripple)		V	--- 10... 36	
Switching capacity		mA	$\leqslant 200$ with overload and short-circuit protection	
Voltage drop, closed state		V	$\leqslant 2$	
Current consumption, no-load		mA	$\leqslant 10$	
Maximum switching frequency	$\varnothing 8$	Hz	2500	
	¢12	Hz	950	
	Ø18	Hz	700	
	Ø30	Hz	200	
Delays	First-up	ms	$\leqslant 15$	
	Response	ms	$\leqslant 0.3$	
	Recovery	ms	$\leqslant 0.3$	

Connections

M8 Connector

Pre-cabled	PNP		NPN	
BU: Blue BN: Brown BK: Black	$\begin{aligned} & \mathrm{BN} / 1 \Gamma \\ & \begin{array}{l} \mathrm{PNP} \\ \widehat{\mathrm{BU} / 3} \mathrm{~L} \end{array} \end{aligned}$		$\begin{aligned} & \mathrm{BN} / 1{ }^{2} \\ & \begin{array}{l} \mathrm{NPN} \\ \widehat{\Delta v} / 3 \end{array} \\ & \hline \mathrm{BU} \end{aligned}$	

For M8 connectors, NO and NC outputs on terminal 4

Setting-up precautions

Sensors		Side by side	Face to face	Facing a metal object	Mounted in a metal support
$\boldsymbol{\varnothing} \mathbf{8}$	$\mathbf{X S 1 0 8 B H}$	$\mathrm{e} \geqslant 5$	$\mathrm{e} \geqslant 30$	$\mathrm{e} \geqslant 8$	-
$\boldsymbol{\varnothing 1 2}$	$\mathbf{X S 1 1 2 B H}$	$\mathrm{e} \geqslant 8$	$\mathrm{e} \geqslant 50$	$\mathrm{e} \geqslant 12$	-
$\boldsymbol{\varnothing 1 8}$	$\mathbf{X S 1 1 8 B H}$	$\mathrm{e} \geqslant 16$	$\mathrm{e} \geqslant 100$	$\mathrm{e} \geqslant 25$	-
$\boldsymbol{\varnothing 3 0}$	$\mathbf{X S 1 3 0 B H}$	$\mathrm{e} \geqslant 30$	$\mathrm{e} \geqslant 180$	$\mathrm{e} \geqslant 30$	$\mathrm{~h} \geqslant 2$

(1) See detection curves on next page.

Dimensions,
curves

Inductive proximity sensors

XS range
Basic, cylindrical, increased range, flush mountable
Three-wire DC, solid-state output

(1)			Pre-cabled (mm)		M8 connector (mm)		M12 connector (mm)	
1-5ा			a	b	a	b	a	b
-	$\varnothing 8$	XS108BHo॰	42	33	51	34	61	40
-	Ø12	XS112BHゃ॰	49	36	-	-	61	39
b	Ø18	XS118BH•॰	53	41	-	-	64	43
a	Ø30	XS130BH*॰	57	44	-	-	68	47

(1) $L E D$

Fixing clamp dimensions XSZB108, XSZBB112, XSZBB118 and XSZBB130

38.3						a	a1	b	b1	b2	\varnothing
				$\varnothing 8$	XSZB108	19.9	14.5	14	12.5	7.5	8
				Ø12	XSZB112	21.9	14.5	16	15.5	8.5	12
				$\varnothing 18$	XSZB118	26	15.7	22.3	20.1	11.5	18
				$\varnothing 30$	XSZB130	39	21.7	35.5	31	18.5	30

(1) 2 elongated holes $\varnothing 4 \times 8 \mathrm{~mm}$

Detection curves

Sensors $\varnothing 8$

Standard metal target (mm): $8 \times 8 \times 1$
Operating zone (mm): 0... 2

Standard metal target (mm): $24 \times 24 \times 1$
Operating zone (mm): 0...6.4

Sensors Ø 12

Standard metal target (mm): $12 \times 12 \times 1$
Operating zone (mm): 0...3.2
Sensors Ø 30

[^2]--- - drop-out points (object approaching from the side)

Inductive proximity sensors
XS range, general purpose
Basic, cylindrical, metal, flush and non flush mountable Three-wire DC, solid-state output

Inductive proximity sensors

XS range, general purpose

Basic, cylindrical, metal, flush and non flush mountable
Three-wire DC, solid-state output

XS118BL•eL•

XS218BLeゃL•

XS130BL••L•

XS230BLe•L•

XS118BL••M12

XS130BL••M12

Sensing distance (Sn)	Function	Output	Connection	Reference	Masse
mm					kg
\varnothing 18, threaded M18 x 1					
Three-wire =-1 12-24 V, flush mountable					
5	NO	PNP	Pre-cabled (L = 2 m)	XS118BLPAL2	0.105
			Pre-cabled (L = 5 m)	XS118BLPAL5	0.175
			M12 connector	XS118BLPAM12	0.035
		NPN	Pre-cabled (L = 2 m)	XS118BLNAL2	0.105
			Pre-cabled (L = 5 m)	XS118BLNAL5	0.175
			M12 connector	XS118BLNAM12	0.035
	NC	PNP	Pre-cabled ($\mathrm{L}=2 \mathrm{~m}$)	XS118BLPBL2	0.105
			M12 connector	XS118BLPBM12	0.035

8	NO	PNP	Pre-cabled (L = 2 m)	XS218BLPAL2	0.105
			Pre-cabled (L = 5 m)	XS218BLPAL5	0.175
			M12 connector	XS218BLPAM12	0.035
		NPN	Pre-cabled (L = 2 m)	XS218BLNAL2	0.105
			Pre-cabled (L = 5 m)	XS218BLNAL5	0.175
			Pre-cabled (L = 7 m)	XS218BLNAL7	0.220
			M12 connector	XS218BLNAM12	0.035
	NC	PNP	Pre-cabled (L = 2 m)	XS218BLPBL2	0.105
		NPN	Pre-cabled (L = 2 m)	XS218BLNBL2	0.105

\varnothing 30, threaded M30 $\times 1.5$					
Three-wire =-- 12-24 V, flush mountable					
10	NO	PNP	Pre-cabled (L = 2 m)	XS130BLPAL2	0.165
			M12 connector	XS130BLPAM12	0.075
		NPN	Pre-cabled (L = 2 m)	XS130BLNAL2	0.165
			Pre-cabled (L = 3 m)	XS130BLNAL3	0.190
			M12 connector	XS130BLNAM12	0.075
	NC	PNP	Pre-cabled (L = 2 m)	XS130BLPBL2	0.165
			M12 connector	XS130BLPBM12	0.075

Three-wire =-- 12-24 V, non flush mountable					
15	NO	PNP	Pre-cabled (L = 2 m)	XS230BLPAL2	0.155
			Pre-cabled ($\mathrm{L}=5 \mathrm{~m}$)	XS230BLPAL5	0.225
			M12 connector	XS230BLPAM12	0.085
		NPN	Pre-cabled (L = 2 m)	XS230BLNAL2	0.155
			Pre-cabled (L = 7 m)	XS230BLNAL7	0.225
			M12 connector	XS230BLNAM12	0.085
	NC	PNP	Pre-cabled (L = 2 m)	XS230BLPBL2	0.155

Inductive proximity sensors

XS range, general purpose
Basic, cylindrical, metal, flush and non flush mountable Three-wire DC, solid-state output
Accessories

Fixing accessories (1)			
Description	For use with sensors	Reference	Weight kg
Fixing clamps	$\varnothing 8$	XSZB108	0.006
	$\varnothing 12$	XSZB112	0.006
	XSZB118	0.010	
	$\varnothing 30$	XSZB130	0.020

Cabling accessories (2)	Length of cable	Reference	Weight
Description	5	XZCPV1141L5	0.210
Pre-wired, straight, female connectors M12 connectors, 4 pins	10	XZCPV1141L10	0.390
MVC cable	5	XZCPV0566L5	0.210
Pre-wired, straight, female connectors	M8 connectors, 3 pins		

(1) See dimensions on page 31.
(2) For other connection accessories, visit our website: www.tesensors.com

Characteristics, schemes

Inductive proximity sensors

XS range, general purpose
Basic, cylindrical, metal, flush and non flush mountable
Three-wire DC, solid-state output

Characteristics						
Sensor type			XS1•0BLP॰L• XS1•0BLNoL•	XS1••BLP•M• XS1••BLN॰M•	XS200BLP•L XS2e0BLNoL	XS2••BLP•M• XS2••BLN॰M•
Product certifications			UL, CSA, C ϵ			
Connection	Pre-cabled		Length 2,3 or 5 m , depending on model	-	Length 2, 5 or 7 m , depending on model	-
	Connector		-	M8 on Ø 8 M12 on Ø 8, Ø 12, $\varnothing 18$ and Ø 30	-	M8 on Ø 8 M12 on Ø 8, Ø 12, $\varnothing 18$ and Ø 30
Operating zone (1)	$\varnothing 8$	mm	0...1.2		0... 2	
	$\varnothing 12$	mm	0...1.6		0...3.2	
	$\varnothing 18$	mm	0... 4		0...6.4	
	Ø 30	mm	0... 8		0... 12	
Differential travel		\%	1... 15 of effective sensing distance (Sr)			
Degree of protection	Conforming to $\text { IEC } 60529$		IP 65 and IP 67			
Storage temperature		${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$			
Operating temperature		${ }^{\circ} \mathrm{C}$	-25... 70			
Materials	Case		Nickel plated brass			
	Cable		$\begin{aligned} & \text { PVC } \\ & 3 \times 0.14 \mathrm{~mm}^{2} \\ & \text { except } \varnothing 8: \\ & 3 \times 0.11 \mathrm{~mm}^{2} \end{aligned}$	-	PVC $3 \times 0.14 \mathrm{~mm}^{2}$ except $\varnothing 8$: $3 \times 0.11 \mathrm{~mm}^{2}$	-
Vibration resistance	Conforming to IEC 60068-2-6		25 gn , amplitude $\pm 2 \mathrm{~mm}$ ($\mathrm{f}=10$ to 55 Hz)			
Shock resistance	Conforming to IEC 60068-2-27		50 gn , duration 11 ms			
Output state indication			Yellow LED, on rear	Yellow LED: 2 viewing ports at 180°	Yellow LED, on rear	Yellow LED: 2 viewing ports at 180°
Rated supply voltage		V	--- $12 . .24$ with protection against reverse polarity			
Voltage limits (including ripple)		V	=-- 10... 36			
Switching capacity		mA	$\leqslant 200$ with overload and short-circuit protection			
Voltage drop, closed state		V	$\leqslant 2$			
Current consumption, no-load		mA	$\leqslant 10$			
Residual current, open state		mA	-			
Maximum switching frequency	$\varnothing 8$	Hz	2500		2500	
	$\varnothing 12$	Hz	2500		1200	
	Ø18	Hz	1200		500	
	Ø30	Hz	500		300	
Delays First-up Response Recovery		ms	$\leqslant 15$		$\leqslant 15$	
	$\varnothing 8$	ms	$\leqslant 0.3$		$\leqslant 0.3$	
	Ø12	ms	$\leqslant 0.1$		$\leqslant 0.1$	
	¢ 18	ms	$\leqslant 0.1$		$\leqslant 0.1$	
	Ø 30	ms	$\leqslant 0.1$		$\leqslant 0.2$	
	$\varnothing 8$	ms	$\leqslant 0.3$		$\leqslant 0.3$	
	$\bigcirc 12$	ms	$\leqslant 0.15$		$\leqslant 0.4$	
	$\varnothing 18$	ms	$\leqslant 0.3$		$\leqslant 1$	
	Ø30	ms	$\leqslant 1$		$\leqslant 1.4$	
Wiring schemes						
Connector	Pre-cabled	PNP			NPN	
	BU: Blue BN: Brown BK: Black					

For M8 connectors, NO and NC outputs on terminal 4

[^3]Setting-up, dimensions

Inductive proximity sensors

XS range, general purpose
Basic, cylindrical, metal, flush and non flush mountable Three-wire DC, solid-state output

Setting-up

		Minimum mounting distances (mm)			
				2.fifform e	
Sensors		Side by side	Face to face	Facing a metal object	Mounted in a metal support
Ø 8 flush mountable	XS108BL	$e \geqslant 3$	$e \geqslant 18$	$e \geqslant 4,5$	$d \geqslant 8 \quad h \geqslant 0$
Ø 8 non flush mountable	XS208BL	$e \geqslant 10$	$e \geqslant 30$	$e \geqslant 7,5$	$d \geqslant 24 \quad h \geqslant 5$
Ø 12 flush mountable	XS112BL	$e \geqslant 4$	$e \geqslant 24$	$e \geqslant 6$	$d \geqslant 12 \quad h \geqslant 0$
Ø 12 non flush mountable	XS212BL	$e \geqslant 16$	$e \geqslant 48$	$e \geqslant 12$	$d \geqslant 36 \quad h \geqslant 8$
Ø 18 flush mountable	XS118BL	$e \geqslant 10$	$e \geqslant 60$	$e \geqslant 15$	$d \geqslant 18 \quad h \geqslant 0$
Ø 18 non flush mountable	XS218BL	$e \geqslant 16$	$e \geqslant 96$	$e \geqslant 24$	$d \geqslant 54 \quad h \geqslant 16$
Ø 30 flush mountable	XS130BL	$e \geqslant 20$	$e \geqslant 120$	$e \geqslant 30$	$d \geqslant 30 \quad h \geqslant 0$
Ø 30 non flush	XS230BL	$e \geqslant 60$	$e \geqslant 180$	$e \geqslant 45$	$d \geqslant 90 \quad h \geqslant 30$

Dimensions

		Non flush mountable in metal								
Sensors		Pre-cabled (mm)			M8 connector (mm)			M12 connector (mm)		
		a	b	c	a	b	c	a	b	c
$\varnothing 8$	XS208BL	44	31	4	50	31	4	61	36	4
Ø 12	XS212BL	44	26	5	-	-	-	55	29	5
Ø18	XS218BL	53	33	8	-	-	-	64	35	8
Ø 30	XS230BL	57	32	13	-	-	-	68	34	13

Curves

Inductive proximity sensors

XS range, general purpose

Basic, cylindrical, metal, flush and non flush mountable
Three-wire DC, solid-state output

Detection curves

Ø 8 sensors
Flush mountable in metal
Sensing distance (mm)

Standard steel target (mm): $8 \times 8 \times 1$
Operating zone (mm): 0...1.2

$\varnothing 12$ sensors

Flush mountable in metal
Sensing distance (mm)

Standard steel target (mm): $12 \times 12 \times 1$
Operating zone (mm): 0...1.6
Ø 18 sensors
Flush mountable in metal
Sensing distance (mm)

Standard steel target (mm): $18 \times 18 \times 1$
Operating zone (mm): 0... 4

$\varnothing 30$ sensors

Flush mountable in meta

Sensing distance (mm)

Standard steel target (mm): $30 \times 30 \times 1$
Operating zone (mm): 0...8

Non flush mountable in metal

Standard steel target (mm): $8 \times 8 \times 1$
Operating zone (mm): 0... 2

Non flush mountable in metal
Sensing distance (mm)

Standard steel target (mm): $12 \times 12 \times 1$
Operating zone (mm): 0...3.2

Non flush mountable in metal

Standard steel target (mm): $24 \times 24 \times 1$
Operating zone (mm): 0...6.4

Non flush mountable in metal
Sensing distance (mm)

Standard steel target (mm): $45 \times 45 \times 1$
Operating zone (mm): 0... 12

Photo-electric sensors
XU range
Multimode: Simplicity through innovation

Principle

In proposing multimode products, Telemecanique Sensors offers simplicity through innovation.

■ With the multimode function, a single product meets all the requirements for optical detection.
Effectively, by simply pressing the "Teach mode" button, the sensor automatically acquires optimum configuration for the application requirements
1 Diffuse system detection of object.
2 Diffuse system, with background suppression, detection of object.
3 Reflex system (reflector accessory) detection of object.
4 Thru-beam system, on optical receiver (transmitter accessory for thru-beam use), detection of object.

■ In addition to this, a multimode sensors also means:

- improved performance:
maximum sensing distance guaranteed and optimised for each application,
- simplified use:
intuitive setting-up plus less and easier maintenance,
- lower costs:
the number of references is divided by 10 and, consequently, selection and supply is simplified and storage costs significantly reduced,
\square guaranteed maximum productivity.

Straightforward NO or NC output

- Irrespective of the detection mode used (diffuse, reflex, thru-beam, etc.), the outputs become either NO or NC (1).
- A multimode sensor means immediate and intuitive setting-up that is accessible to all.
(1) The sensor is supplied in NO configuration. NO or NC selection is performed by simply pressing the Teach mode button.

Fixing accessories

A complete range of inexpensive mounting accessories (clamps, traditional or 3D brackets, etc.) is available that provides solutions for all installation and adjustment problems

Photo-electric sensors
 XU range
 Multimode: Simplicity through innovation

Design	Cylindrical 18	Miniature
Dimensions ($\mathbf{w} \mathbf{x} \times \mathrm{x}$) in mm	M18 $\times 64$	$12 \times 34 \times 20$
Maximum Without accessory with background sensing distance suppression	0.12	0.10
in m Without accessory	0.4	0.55
With polarised reflector	3	4
With thru-beam accessory	20	14
Supply $\quad=-$ Solid-state output	\square	\square
\sim Relay output	-	-
Connection Pre-cabled	-	-
Connector	-	-
Screw terminals	-	-
Sensor type	XUB0	XUM0
Pages	66 to 69	52 to 55

Sensing distances (see table above)

Sensing distance without accessory with background suppression

■ Without accessory, the multimode sensor detects objects irrespective of their colour or background.

- A clean environment is recommended

Sensing distance without accessory

■ Beyond the sensing distance with background suppression, the same multimode sensor without accessory detects objects but may be influenced by the backgrounds and colour of the objects to be detected.

Sensing distance with polarised reflector

■ By installing a reflector opposite, the same multimode sensor detects objects irrespective of their shininess and colour.
■ The size of the reflector must be smaller than that of the object to be detected

- The larger the area of the reflector the longer the sensing distance.

Sensing distance with thru-beam transmitter accessory

■ After setting-up and connecting a thru-beam transmitter accessory opposite, the same multimode sensor detects objects irrespective of their shininess, colour or background.

- The detection distance is a maximum

■ The sensor and the thru-beam transmitter must be carefully aligned

- Good resistance to accumulation of dirt and dust

Photo-electric sensors
 XU range

Standards and certifications
Parameters related to the environment

- Temperature ${ }^{\circ} \mathrm{C}$
- - - Relative humidity \%

Recommendation

The sensors detailed in this catalogue are designed for use in standard industrial applications relating to presence detection.
These sensors do not incorporate the required redundant electrical circuit enabling their usage in safety applications.
For safety applications, please refer to our "Safety solutions using Preventa" catalogue.

Quality control

Our photo-electric sensors are subject to special precautions in order to guarantee their reliability in the most arduous industrial environments.

- Qualification
- The product characteristics stated in this catalogue are subject to a qualification procedure carried out in our laboratories.
- In particular, the products are subjected to climatic cycle tests for 3000 hours whilst powered-up to verify their ability to maintain their characteristics over time.

- Production

- The electrical characteristics and sensing distances at both ambient temperature and extreme temperatures are 100\% checked.
\square Products are randomly selected during the course of production and subjected to monitoring tests relating to all their characteristics.
- Customer returns
- If, in spite of all these precautions, defective products are returned to us, they are subject to systematic analysis and corrective actions are implemented to eliminate the risks of the fault recurring.

Immunity to ambient light

■ XU photo-electric sensors use the pulsed light principle. This provides a high degree of immunity to spurious light that conforms to standard IEC 60947-5-2.

Resistance to electromagnetic interference

The photo-electric sensors are tested in accordance with the recommendations of the standard IEC 60947-5-2

- Electrostatic discharges

IEC/EN 61000-4-2

$\approx 15 \mathrm{kV}$ version, level 4
-- 8 kV version, level 3

- Radiated electromagnetic fields (electromagnetic waves)

IEC/EN 61000-4-3
$10 \mathrm{~V} /$ metre, level 3

- Fast transients in salvos (motor start/stop interference)

IEC/EN 61000-4-4
2 kV , level 4

Impulse voltages, lightning
IEC 60947-5-2
$\approx 2.5 \mathrm{kV}$ version
-- 1 kV version

Mechanical shock resistance

The sensors are tested in accordance with standard IEC 60068-2-27, 30 gn , duration 11 ms .

Vibration resistance

The sensors are tested in accordance with standard IEC 60068-2-6,
7 gn , amplitude $\pm 1.5 \mathrm{~mm}, \mathrm{f}=10 \ldots 55 \mathrm{~Hz}$.

Resistance to chemicals in the environment

- Owing to the very wide range of chemicals encountered in industry, it is very difficult to give general guidelines common to all sensors.
- To ensure lasting efficient operation, it is essential that any chemicals coming into contact with the sensors will not affect their casing and, in doing so, prevent their reliable operation (please refer to the characteristics pages for the various sensors).
In all cases, the materials selected (see product characteristics) provide satisfactory compatibility in most industrial environments (for further information, please consult our Customer Care Centre).

Photo-electric sensors
 XU range

Principle of optical detection

1 Light beam transmitter
2 Light beam receiver
3 Signal processing stage
4 Output stage

1 X rays, 2 Ultraviolet, 3 Visible light,
4 Near infrared, 5 Far infrared

Detection systems

Composition of a photo-electric sensor

A photo-electric sensor basically comprises a light beam transmitter (light-emitting diode) and a light-sensitive receiver (photo-transistor).
A light-emitting diode is an electronic semi-conductor component that emits light when an electric current flows through it. This light can be visible or invisible, depending on the transmission wavelength.

Detection occurs when an object enters the transmitted light beam and, in so doing, affects the intensity of the light at the receiver. As the light intensity at the receiver decreases a point is reached whereby the output of the sensor changes state.

Light spectrum

Depending on the model and application requirements, the transmission beam is either non visible infrared (most common case) or ultraviolet (detection of luminescent materials). It may also be visible red or green (colour mark reading etc.) and laser red (long sensing distance and short focal length).

Modulation

The advantage of LEDs is their very fast response. To render the system insensitive to ambient light, the current flowing through the LED is modulated so as to produce a pulsed light transmission.
Only the pulsed signal will be used by the photo-transistor and processed to control the load.

Thru-beam system or multimode with thru-beam accessory

- Advantages

- Long sensing distance(up to 60 m).
\square Very precise detection, high repeat accuracy.
- Detection not affected by colour of object.
- Good resistance to difficult environments (dust, grime, etc.)
- Drawbacks
- 2 units to be wired.
- The object to be detected must be opaque.
\square Precise alignment required, which can be difficult since the sensor transmits in the infrared range (invisible).

- Operating precautions

- When several sensors are used, care must be taken to ensure that no sensor is disrupted by another sensor (e.g. alternate mounting of transmitter/receiver etc.).

Advantages of multimode sensor with thru-beam accessory

- Easy alignment
- The sensor transmits in the visible red range during the alignment phase.
$\square 3$ LEDs providing setting-up assistance.

Polarised reflex system or multimode with reflector accessory

- Advantages

- Medium sensing distance (up to 15 m).
\square Precise detection.
- Only one unit to be wired
- Detection not affected by colour of object.
- Visible red beam transmission.
- Drawbacks
- Precise alignment required.
\square The object to be detected must be opaque and larger than the reflector.
- Operating precautions
- When several sensors are used, they must be aligned in such a manner that no sensor is disrupted by another sensor.
\square For short distance detection use a reflector with large trihedrons, type XUZC24.
- For long distance detection use a reflector XUZC50 or XUZC80.
- To increase the sensing distance use reflector XUZC100
- If reflective tape is used, use rolls of tape XUZB1 or XUZB15 which are specially adapted for polarised reflex systems.

Advantages of multimode sensor with reflector accessory

- Easy alignment
- 3 LEDs providing setting-up assistance
- The anti-interference function enables 2 sensors to be used without specific alignment precautions.
- Semi-transparent objects can be detected by using the teach mode function

Photo-electric sensors
 XU range

Detection systems (continued)

Positioning recommendations for sensor with background suppression
Specific systems

(2) Output LED

Diffuse system or multimode

- Advantage

- Only one unit to be wired.
- Drawbacks
- Short sensing distance.
- Sensitivity to object or background colour differences.
- Object sighting line difficult since the sensor transmits in the infrared range (invisible).
- Operating precautions

When several sensors are used, they must be aligned in such a manner that no sensor is
disrupted by another sensor.

- Advantages of a multimode sensor
- Easy alignment:
- the sensor transmits in the visible red range during the alignment phase,
- 3 LEDs providing setting-up assistance,
- the anti-interference function enables 2 sensors to be used without specific alignment precautions.
\square Refined detection: the position of the object can be detected using the teach mode.

Diffuse, with or without background suppression, system or multimode

- Advantages

- Only one unit to be wired.
- Detection not affected by colour of object or background.
- Drawbacks
- Short sensing distance.
\square Object sighting line difficult since the sensor transmits in the infrared range (invisible).
- Operating precautions
- Detection can be affected by the object's direction of movement. To overcome this phenomenon (the hat effect), it is recommended that the sensor is mounted so that the object simultaneously breaks the beam of both lenses.
\square When several sensors are used, they must be aligned in such a manner that no sensor is disrupted by another sensor.
- Advantages of a multimode sensor
- Easy alignment:
- the sensor transmits in the visible red range during the alignment phase,
- 3 LEDs providing setting-up assistance,
- the anti-interference function enables 2 sensors to be used without specific alignment precautions,
- the hat effect is minimised using the background teach mode.
\square Refined detection: the position of the object can be detected using the teach mode.

Optical forks

- Constructed from metal, the optical fork is a robust sensor that is particularly suited to conveying and packaging applications and detection of labels.
■ Rugged optical detection device not requiring alignment in thru-beam mode.
- The beam from the transmitter limb is transmitted to the receiver limb. Due to its construction,
only one connection is required as opposed to two for a traditional thru-beam function.
- The transmission sources are LEDs of various technologies:
- Red for much improved efficiency during adjustment and maintenance
- Red laser for detection of transparent materials or very small parts
- Infrared, particularly for optical frames
- Ultrasonic for detection of transparent labels (clear on clear)
- The beam is adjustable or fixed depending on the version. Adjustment enables the sensitivity to be altered and, therefore, detection of small parts down to dimensions of less than tenths of millimetres (minimum size of detectable object: 0.05 mm).
- The high switching frequency (from 4 kHz up to 25 kHz) is very useful in industrial applications involving high operating rates.

Fibre optics

- The fibre acts as a light conductor. Light rays entering the fibre at a certain angle are
conveyed to the required location, with minimum loss.
- Separate amplifier.
- Size kept to minimum.
- This system enables detection of very small objects (approximately 1 mm).
\square And, detection is very precise.

Plastic fibres

The core of the fibre is flexible plastic (PMMA). In general, there is only a single fibre of diameter 0.25 to 1 mm , depending on the model.

- Fibres are used with amplifiers transmitting red light.
- Minimum bend radius:
- 10 mm for fibres with 0.25 mm diameter core,
- 25 mm for fibres with 1 mm diameter core.
- Advantages: fibres can be cut to the required length.

Glass fibres

- The core of the fibre is silica. For maximum flexibility, each fibre comprises numerous strands that are approximately 50μ in diameter.
- Fibres are used with amplifiers transmitting infrared or red light.
\square Minimum bend radius:
- 10 mm with plastic sheath,
- 90 mm with stainless steel sheath.
- Advantages
- Fibres suitable for use at high temperatures $\left(250^{\circ} \mathrm{C}\right)$.
- Fibres with stainless steel sheath provide protection against mechanical impact and crushing

Photo-electric sensors XU range

Detection curves

Excess gain

Optical alignment aid

Detection distance using reflector

Thru-beam system

- The \square zone indicates the positioning tolerance of the receiver.
- The zone represents the usable sensing zone of the system. Any opaque object entering this zone breaks the beam and causes the sensor's output to change state.
1 Ideal detection
2 Acceptable detection
$\boldsymbol{T}=$ transmitter
$\boldsymbol{R}=$ receiver

Polarised reflex system

■ The \square zone indicates the positioning tolerance of the reflector

- The zone represents the usable sensing zone of the system. Any opaque object
entering this zone breaks the beam and causes the sensor's output to change state.
1 Ideal detection
2 Acceptable detection
$\boldsymbol{T}=$ transmitter
$R=$ receiver

Diffuse, with or without background suppression, system

- The zone represents the sensor's sensitivity zone.

All of this zone is usable: any object that is adequately reflective entering this zone, in the direction of the arrow, will cause the sensor's output to change state. The black line corresponds to a light colour surface and the blue line to a darker colour surface.

- A test using the object to be detected will determine the zone of sensitivity in relation to its reflection coefficient.
__ White 90\% object
_- Grey 18\% object
For specific aspects of diffuse systems see page 42.
$\boldsymbol{T}=$ transmitter
$\boldsymbol{R}=$ receiver

Operating margin

To ensure correct operation of a sensor in spite of environmental constraints, the sensors feature an operating margin.
This margin can be expressed in terms of excess gain, which is the ratio:
Excess gain $=$ Signal level received/Signal required for switching.

For all XU range sensors

- The nominal sensing distance $\mathbf{S n}$ is defined as the sensing distance with an excess gain of 2, i.e. the sensing distance for which the sensor receives twice as much light energy as it strictly needs to switch it.
The maximum sensing distance is defined as the sensing distance with an excess gain of

1. It corresponds to the maximum detection value.

The use of the sensor at the nominal sensing distance ensures the sensor's correct operation in normal operating conditions.

In extreme conditions, refer to the following setting-up recommendations:

- clean environment: work at nominal sensing distance Sn,
- slightly polluted environment: work at sensing distance $\mathrm{Sn} / 2$,
- moderately polluted environment: work at sensing distance $\mathrm{Sn} / 4$,
- heavily polluted environment: preferably use multimode sensors with thru-beam accessory (or the thru-beam system) with a sensing distance $\mathrm{Sn} / 10$.

A red LED assists setting-up by illuminating when optimum alignment of the sensor is achieved.
1 Signal level
2 Red LED, on :* off \otimes
3 Green $L E D$, on "غ̈:- off \otimes
4 Optimum alignment

Photo-electric sensors
 XU range

Outputs

2-wire technique \sim or \sim

■ Specific aspects

These sensors are wired in series with the load to be switched.
As a consequence, they are subject to:
\square A residual current in the open state (current flowing through the sensor in the "open" state),
\square A voltage drop in the closed state (voltage drop across the sensor's terminals in the "closed" state).

- Advantages
- Only 2 wires to be connected. They can be wired in series in the same way as mechanical limit switches.
- For use on 2-wire =-., they can be connected to either positive (PNP) or negative (NPN) logic PLC inputs.
- No risk of incorrect connections.

- Operating precautions

- Check the possible effects of residual current and voltage drop on the actuator or input connected.
\square These sensors do not incorporate overload or short-circuit protection and therefore, it is essential to connect a 0.4 A "quick-blow" fuse in series with the load.

3-wire technique ---

- Specific aspects

- These sensors comprise 2 wires for the DC supply and a 3rd wire for the output signal.
- PNP type: switching the positive side to the load.
\square NPN type: switching the negative side to the load.

Advantages

\square No residual current, low voltage drop.

5-wire technique \sim or \approx, relay output

- Specific aspects
- Sensors incorporating output relay. The supply and output circuits are electrically separate.
- Advantages
- ~or -- supply with a wide voltage range.
- High breaking capacity (approximately 3A).
- Direct control of a simple automation system.
- Availability of a NC (normally closed) contact and a NO (normally open) contact.
- The sensor/relay contact galvanic isolation is 1500 to 2500 V , depending on the model.
- Operating precautions
- Low switching frequency. Check that it is suitable for the application.
- Limited service life of relay. Check that it is suitable for the application.

Analogue technique

- Specific aspects

There are two output configurations:
ㅁ Voltage output: the output voltage varies in proportion to the distance between the sensor and the object to be detected.

- Current output: the output current varies in proportion to the distance between the sensor and the object to be detected.

- Advantage

- Availability of a physical item of data proportional to the distance between the sensor and the object to be detected.

- Operating precautions

- Refer to the detailed descriptions of the sensor to assess the relative influence of the colour of the object to be detected.

1 Voltage output
2 Current output

Photo-electric sensors
 XU range

Outputs (continued)

Time delay on beam break

Monostable

Output functions

In the past, the output functions of photo-electric sensors were always governed by the "light/ dark" principle, i.e. the output would be activated on light being received for "light" switching and the output would be activated on light not being received for "dark" switching.
This called for fastidious programming specific to each detection mode.
Now, the output functions of the $X U$ range range of photo-electric sensors are in phase with the language of the automation system engineer, i.e. NO (normally open) or NC (normally closed).

- Advantages
\square NO output (or NO programming for multimode sensors): irrespective of the detection mode, the output of the sensor is activated when the object to be detected is present
\square NC output (or NC programming for multimode sensors): irrespective of the detection mode, the output of the sensor is activated when the object to be detected is not present.
- Advantages of multimode sensors

By default, the output is NO programmed, i.e. the output of the sensor is activated when the object to be detected is present.
\square By pressing the teach button, the output can programmed to NC, i.e. the output of the sensor is activated when the object to be detected is not present.

- Certain sensor models (XUK, XUX and XUD) incorporate a time delay output.
- These time delays enable simple automation systems to be established.
- There are three types of time delay:
\square Time delay on beam make (ON delay).
\square Time delay on beam break (OFF delay).
\square Monostable (one shot).

Photo-electric sensors
 XU range

All our sensors are available either in pre-cabled version (except XUX; screw terminal with cable gland version) or connector version. The connectors used are:
M12 (4-pin) M8 (4-pin)

-pin)
1/2" 20UNF (3-pin)

- Types of connection

1 Factory fitted moulded cable: good protection against splashing liquids.
2 Connector: easy installation and maintenance.
3 Screw terminals: flexibility, cable runs to required length.

- Wiring advice
- Length of cable: no limitation up to 200 m or up to a line capacitance of < $0.1 \mu \mathrm{~F}$ (characteristics of sensors remain unaffected). In this case, it is important to take into account the voltage drop on the line.
\square Separation of control and power circuit wiring: the sensors are immune to electrical interference encountered in normal industrial conditions. Where extreme conditions of electrical "noise" could occur (motors etc.), it is advisable to protect against transients in the normal way:
- suppress interference at source and filter the power supply,
- separate power and control wiring from each other,
- ensure the HF equipotentiality of the site,
- limit the length of cable,
- connect the sensor with supply switched off.
- Dust and damp protection of connections: the level of dust and damp protection depends on how carefully the cable glands or connectors are tightened. To efficiently protect the sensors from dust and damp, select the correct diameter cable for the cable gland used.

Cable gland	Diameter of cable Minimum	Maximum
9P	6	8
11P	8	10
13P	10	12
ISO 16	7	10
SO 20	10	12
Diagnostics, beam break test		

A test input enables the transmitted beam to be broken in order to verify that the output of the sensor changes state.
Fault diagnostics regarding correct operation of the sensor can therefore be carried out.
1 Beam made
2 Beam broken
VI: test input for breaking transmitted beam.

Verification of correct operation

In the event of dirty lenses (reflectors), an excessively polluted atmosphere or a slight disturbance of optical alignment (mechanical impact on support), the level of light energy received by the sensor will decrease until it ceases to operate.
To overcome this problem, all our products incorporate:

- a red alarm LED,
- an alarm output, for connection in the automation system, to warn the operator that the operation of the sensor is stable but close to its limits (applies to sensors XUK, XUX, XUD).

Photo-electric sensors
 XU range

Specific aspects of electronic sensors

Terminology

Residual current (Ir)

- The residual current (Ir) corresponds to the current flowing through the sensor when in the "open" state.
- Characteristic of 2-wire type sensors.

Voltage drop (Ud)

\square The voltage drop (Ud) corresponds to the voltage drop at the sensor's terminals when in the
"closed" state (value measured at nominal current rating of sensor).

- Characteristic of 2-wire type proximity sensors.

First-up delay

The first-up delay corresponds to the time (t) between the connection of the power supply to the sensor and its fully operational state.
1 Supply voltage U on
2 Sensor operational at state 1
3 Sensor at state 0

Response time

- Response time (Ra): the time delay between the object to be detected entering the sensor's operating zone and the subsequent change of output state. This parameter limits the speed and size of the object.
\square Recovery time (Rr): the time delay between an object to be detected leaving the sensor's operating zone and the subsequent change of output state. This parameter limits the interval between successive objects.

Power supplies

Sensors for AC circuits (\sim and \sim models)
Check that the voltage limits of the sensor are compatible with the nominal voltage of the AC supply used

Sensors for DC circuits (--- models)

- DC source: check that the voltage limits of the sensor and the acceptable level of ripple are compatible with the supply used.
- AC source (comprising transformer, rectifier, smoothing capacitor): the supply voltage must be within the operating limits specified for the sensor.
- Where the voltage is derived from a single-phase AC supply, the voltage must be rectified and smoothed to ensure that:
- the peak voltage of the DC supply is lower than the maximum voltage rating of the sensor.

Peak voltage $=$ nominal voltage $\times \sqrt{2}$

- the minimum voltage of the supply is greater than the minimum voltage rating of the sensor, given that:
$\Delta V=(1 x t) / C$
$\Delta V=$ max. ripple: $10 \%(V)$,
$\mathrm{I}=$ anticipated load current (mA),
$\mathrm{t}=$ period of 1 cycle (10 ms full-wave rectified for a 50 Hz supply frequency),
C = capacitance ($\mu \mathrm{F}$).
\square As a general rule, use a transformer with a lower secondary voltage (Ue) than the required DC voltage (U).

Example: $\sim 18 \mathrm{~V}$ to obtain $=24 \mathrm{~V}$, $\sim 36 \mathrm{~V}$ to obtain $=48 \mathrm{~V}$. Fit a smoothing capacitor of $400 \mu \mathrm{~F}$ minimum per sensor, or $2000 \mu \mathrm{~F}$ minimum per Ampere required.

Photo-electric sensors
 XU range

Connection in series

2-wire type sensors

- The following points should be taken into account:
- Series wiring is only possible using sensors with wide voltage limits.

Based on the assumption that each sensor has the same residual current value, each sensor, in the open state, will share the supply voltage, i.e.
U sensor $=\frac{U \text { supply }}{\mathrm{n} \text { sensors } .}$
U sensor and U supply must remain within the sensor's voltage limits.
\square If only one sensor in the circuit is in the open state, it will be supplied at a voltage almost equal to the supply voltage.

- When in the closed state, a small voltage drop is present across each sensor. The resultant loss of voltage at the load will be the sum of the individual voltage drops and therefore, the load voltage should be selected accordingly.

3-wire type sensors

This connection method is not recommended.

- Correct operation of the sensors cannot be assured and, if this method is used, tests should be made before installation.
- The following points should be taken into account:
- The first sensor carries the load current in addition to the no-load current consumption values of the other sensors connected in series. For certain models, this connection method is not possible unless a current limiting resistor is used.
\square When in the closed state, a small voltage drop is present across each sensor. The load should therefore be selected accordingly.
\square As sensor 1 closes, sensor 2 does not operate until a certain time (t) has elapsed
(corresponding to the first-up delay) and likewise for the following sensors in the sequence.
- The use of "flywheel" diodes is recommended when an inductive load is being switched.

Wiring sensors to devices with mechanical contact
 \section*{2 and 3-wire type sensors}

- The following points should be taken into account:
- When the mechanical contact is open, the sensor is not supplied.
- When the contact closes, the sensor does not operate until a certain time (t) has elapsed (corresponding to the first-up delay).
- In scheme 1, as the external contact opens, the voltage transient caused by the breaking of the inductive load will appear inside the sensor and, if greater than the recommended max. insulation voltage, may cause a "flashover" within the sensor.
- The return path of this voltage will be back to one line of the supply, through the sensor, and should "flashover" occur anywhere on the printed circuit board, severe damage could occur. \square It is therefore recommended to use schemes 2 or 3.

Connection in parallel

2-wire type sensors

This connection method is not recommended.

- Should one of the sensors be in the closed state, the sensor in parallel will be "shorted-out" and no longer supplied. As the first sensor passes into the open state, the second sensor will become energised and will be subject to its first-up delay.
■ This configuration is only permissible where the sensors will be working alternately.
- This method of connection can lead to irreversible damage of the units.

3-wire type sensors

- No specific restrictions. The use of "flywheel" diodes is recommended when an inductive load (relay) is being switched.

[^4]
Photo-electric sensors
 XU range

Setting-up precautions (continued)

AC supply

■ 2-wire type sensors cannot be connected directly to an AC supply.
\square This would result in immediate destruction of the sensor and considerable danger to the user. \square An appropriate load (refer to the instruction sheet supplied with the sensor) must always be connected in series with the sensor.

Capacitive load ($C>0.1 \mu \mathrm{~F}$)

■ On power-up, it is necessary to limit (by resistor) the charging current of the capacitive load C. \square The voltage drop in the sensor can also be taken into account by subtracting it from the supply voltage for the calculation of R.
$\mathrm{R}=\frac{\mathrm{U} \text { (supply) }}{\mathrm{Imax} \cdot(\text { sen }}$
$\mathrm{R}=\frac{\mathrm{I} \text { (sax. (sensor) }}{\text { In }}$

Load comprising an incandescent lamp

- If the load comprises an incandescent lamp, the cold state resistance can be 10 times lower than the hot state resistance. This can cause very high current levels on switching. Fit a pre-heat resistor in parallel with the sensor.
$\mathrm{R}=\frac{\mathrm{U}^{2}}{\mathrm{P}} \times 10, \mathrm{U}=$ supply voltage and $\mathrm{P}=$ lamp power

Fast trouble shooting guide

Problem

The sensor's output will not change state when an object enters the operating zone

False or erratic operation, with or without the presence of an object in the operating zone

Possible causes	Remedy
On multimode sensor: setting-up error (detection mode programming)	■ Use the detection mode display option. After a RESET, follow the environment teach mode procedure.
Output stage faulty or complete failure of the sensor (in either case, the sensor must be replaced), or the short-circuit protection has tripped.	- Check that the sensor is compatible with the supply being used. - Check the load current characteristics: - if load current I \geqslant maximum switching capacity, an auxiliary relay, of the CAD N type for example, should be interposed between the sensor and the load. - if I \leqslant maximum switching capacity, check or wiring faults (short-circuit). ■ In all cases, a 0.4 A "quick-blow" fuse should be fitted in series with the sensor.
Wiring error	Check that the wiring conforms to the wiring shown on the sensor label or instruction sheet.
Supply fault	Check that the sensor is compatible with the supply (\sim or $=-$). Check that the supply voltage is within the voltage limits of the sensor. Remember that with a rectified, smoothed supply, - (U peak $=\mathrm{U}$ nominal $\mathrm{x} \sqrt{2}$ with a ripple voltage of \leqslant 10%).
With a reflex system: incorrect use or poor state of reflector	- The reflex system must operate in conjunction with a reflector. Adhere to the operating distances and check the alignment between the sensor and the reflector. - Replace the reflector if it has been damaged. - Clean the reflector and sensor lenses.
Influence of ambient light	- Make sure that the sensor is not dazzled by stray light (neon, sun, oven, etc.). - Fit a lens hood or turn the sensor.
On multimode sensor: setting-up error (detection mode programming)	- Use the detection mode display option. After a RESET, follow the environment teach mode procedure.
Influence of background or surface condition of the object to be detected (stray reflections)	Refer to the instruction sheet supplied with the sensor. For sensors with adjustable sensitivity, reduce or increase the sensing distance.
Operating distance poorly defined for the reflector or object to be detected	- Apply the correction coefficients. - Realign the system. - Clean the sensor lenses and reflector, or, if damaged, replace it.
Influence of immediate environment	- Check the cleanliness of the lenses and reflector. ■ Fit a lens hood, where required.
Influence of transient interference on the supply lines	- Ensure that any DC supplies, when derived from rectified AC, are correctly smoothed ($C>400 \mu \mathrm{~F}$). - Separate AC power cables from low-level DC cables (-- 24 V low level). - Where very long distances are involved, use suitable cable: screened and twisted pairs of the correct cross-sectional area.
Equipment prone to emitting electromagnetic interference	- Position the sensors as far away as possible from any sources of interference.
Response time of the sensor too slow for the particular object being detected	Check the suitability of the sensor for the position or shape of the object to be detected. - If necessary, select a sensor with a higher switching frequency.
Influence of high temperature	Eliminate sources of radiated heat or protect the sensor casing with a heat shield. - Realign, having adjusted the temperature around the fixing support.
Influence of ambient light	- Make sure that the sensor is not disrupted by a intermittent source of light (flashing light, rotating mirror beacon, hinged mirror, reflective door, etc.). - Fit a lens hood or turn the sensor.

Fast troubleshooting guide (continued)		
Problem	Possible causes	Remedy
No detection following a period of service	Vibration, shock	- Realign the system - Replace the support or protect the sensor.
	Deterioration of relay contact	- On an inductive load, use an RC suppressor connected in parallel with the load. To eliminate contact contamination, the minimum current recommended is 15 mA . - Relay output models are not recommended for fast counting of objects since their service life is too short. Use models with a solid-state output.

Notes:

■ Sensors with a test input enable automatic verification of their correct operation.

- Sensors with an alarm output enable the operator to be informed, for preventive maintenance purposes, that the operating limits of sensors have been reached (dirty etc.).

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

XUZDVM••

XUZDRM••

Max.loperating sensing distance (Sn)	Function	Output	Connection	Reference	Weight kg
Transmitter + receiver					
$30 \mathrm{~m} / 24 \mathrm{~m}$	Light ON (NC)/ Dark ON (NO) configuration by potentiometer	PNP	Pre-cabled $(\mathrm{L}=2 \mathrm{~m})$	XUM2APXBL2	0.096
			M8 connector (4-pin)	XUM2APXBM8	0.026
		NPN	$\begin{aligned} & \text { Pre-cabled } \\ & (\mathrm{L}=2 \mathrm{~m}) \end{aligned}$	XUM2ANXBL2	0.096
			M8 connector (4-pin)	XUM2ANXBM8	0.026

Transmitter only (1)			
$30 \mathrm{~m} / 24 \mathrm{~m}$	Pre-cabled $\text { (L = } 2 \mathrm{~m})$	XUM2AKXBL2T	0.063
	M8 connector (4-pin)	XUM2AKXBM8T	0.010

Receiver only (1)					
$30 \mathrm{~m} / 24 \mathrm{~m}$	Light ON (NC)/ Dark ON (NO) configuration by potentiometer	PNP	Pre-cabled $(\mathrm{L}=2 \mathrm{~m})$	XUM2APXBL2R	0.630
			M8 connector (4-pin)	XUM2APXBM8R	0.010
		NPN	Pre-cabled $(\mathrm{L}=2 \mathrm{~m})$	XUM2ANXBL2R	0.063
			$\begin{aligned} & \text { M8 connector } \\ & \text { (4-pin) } \end{aligned}$	XUM2ANXBM8R	0.010

Accessories for thru-beam system Description	Dimensions	Sensing distance	Reference	Weight
Vertical diaphragm Sold in lots of 2	$\mathbf{m m}$	\mathbf{m}	XUZDVM05	0.003
	1×6.4	1.5	XUZDVM10	0.003
	2×6.4	3.5	XUZDVM20	0.003
Horizontal diaphragm Sold in lots of 2	0.5×6.4	0.7	XUZDHM05	0.003
	2×6.4	1.5	XUZDHM10	0.003
Round diaphragm Sold in lots of 2	0.5×6.4	3	XUZDHM20	0.003
	1×6.4	0.08	XUZDRM05	0.003
	2×6.4	1.2	XUZDRM10	0.003

Fixing accessories

See page 53.

Cabling accessories

See "Cabling accessories XZ" catalogue.
(1) To order these references, please consult our Customer Care Centre.

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

XUZC50

XUZC39

XUM8A•XBL2

XUM8A•XBM8

Polarised reflex system with adjustable sensitivity
Sensors
Max.loperating sensing distance (Sn)
Function
8 m/6.7 \mathbf{m} with reflector XUZC50
:---
Dark ON (NO)
configuration by
potentiometer

Accessories

Fixing accessories
See page 53

Cabling accessories

See "Cabling accessories XZ" catalogue

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

XUM4A•XBL2 XUM4A•XBM8

XUM6A•XBL2

XUM5A•XBL2

XUM6A•XBM8

XUM5A•XBM8

Diffuse system with adjustable sensitivity					
Max./operating sensing distance (Sn)	Function	Output	Connection	Reference	Weight kg
Diffuse short range					
$0.25 \mathrm{~m} / 0.17 \mathrm{~m}$	Light ON (NO)/ Dark ON (NC) configuration by	PNP	Pre-cabled ($\mathrm{L}=2 \mathrm{~m}$)	XUM4APXBL2	0.063
	potentiometer		$\begin{aligned} & \hline \text { M8 connector } \\ & \text { (4-pin) } \end{aligned}$	XUM4APXBM8	0.010
		NPN	Pre-cabled $(\mathrm{L}=2 \mathrm{~m})$	XUM4ANXBL2	0.063
			M8 connector (4-pin)	XUM4ANXBM8	0.010

$\left.\begin{array}{|ccllll|}\hline \text { Diffuse medium range } \\ \mathbf{1 . 1} \mathbf{~ m} / \mathbf{0 . 8} \mathbf{m} & \begin{array}{l}\text { Light ON (NO)/ } \\ \text { Dark ON (NC) } \\ \text { configuration by } \\ \text { potentiometer }\end{array} & & \text { PNP } & \begin{array}{l}\text { Pre-cabled } \\ (\mathrm{L}=2 \mathrm{~m})\end{array} & \text { XUM6APXBL2 }\end{array}\right] 0.063$

Diffuse long range					
$1.9 \mathrm{~m} / 1.5 \mathrm{~m}$	Light ON (NO)/ Dark ON (NC) configuration by potentiometer	PNP	Pre-cabled ($\mathrm{L}=2 \mathrm{~m}$)	XUM5APXBL2	0.063
			M8 connector (4-pin)	XUM5APXBM8	0.010
		NPN	Pre-cabled ($\mathrm{L}=2 \mathrm{~m}$)	XUM5ANXBL2	0.063
			M8 connector (4-pin)	XUM5ANXBM8	0.010

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Characteristics					
Sensor type				XUM•A॰XBM8	XUM•A॰XBL2
Product certifications				c $€$, UKCA, cULus EAC, RCM (pending)	
Connection	Connector			M8	-
	Pre-cabled			-	Length: 2 m
Nominal sensing distance Sn	Système barrage	XUM2	m	$\begin{aligned} & 30(\text { with excess gain }=1) \\ & 24(\text { with excess gain }=2) \end{aligned}$	
	Polarised reflex system (using a $50 \times 50 \mathrm{~mm}$ reflector XUZC50)	XUM9	m	$\begin{aligned} & 0.05 \ldots 8(\text { with excess gain }=1) \\ & 0.05 \ldots 6.7(\text { with excess gain }=2) \end{aligned}$	
	Background suppression system	XUM8	mm	$4 \mathrm{~mm} . . .300 \mathrm{~mm}$: White paper or object. Sn (90\%) 5 mm ... 265 mm : Grey object. Sn (18\%) $8 \mathrm{~mm} . .200 \mathrm{~mm}$: Black object. Sn (6\%)	
	Diffuse system (using a white paper	XUM4	m	0.25 (with excess gain $=1$) 0.17 (with excess gain =2)	
	$200 \times 200 \mathrm{~mm}$)	XUM5	m	$\begin{aligned} & 1.9(\text { with excess gain }=1) \\ & 1.5(\text { with excess gain }=2) \end{aligned}$	
		XUM6	m	$\begin{aligned} & 1.1(\text { with excess gain }=1) \\ & 0.8(\text { with excess gain }=2) \end{aligned}$	
Hysteresis				$2 \%<\mathrm{H}<20 \%$ at Sn	
Type of transmission	Red			Thru-beam system XUM2 Polarised reflex system XUM9 Background suppression system XUM8 Diffuse system XUM6	
	Infrared			Diffuse system XUM4 and XUM5	
Degree of protection	Conforming to IEC 60529			IP 65, IP 67	
Storage temperature			${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	
Operating temperature			${ }^{\circ} \mathrm{C}$	$-30 \ldots+55$	
Materials	Case			PBT	
	Lens			PMMA	
	Display			PC	
	Cable			PVC	
Vibration resistance	Conforming to IEC 60068-2-6			Frequency range: 10 to 500 Hz Acceleration: 9 gn	
Shock resistance	Conforming to IEC 60068-2-27			Peak acceleration: 100 gn Duration of the pulse: 11 ms	
Indicator lights	Output state			Yellow LED	
	Stability			Green LED (XUM4, XUM5, XUM6, XUM8, XUM9)	
	Power on			Green LED (XUM2)	
Rated supply voltage			V	--. $12 \ldots 24$ with protection against reverse polarity	
Voltage limits (including ripple)			V	=-- 12... 24	
Current consumption, no-load			mA	< 20 max.	
Switching capacity			mA	100	
Voltage drop, closed state			V	$\leqslant 2$	
Maximum switching frequency			Hz	1000	
Delays	First-up		ms	<100	
	Response		ms	0.5	
	Recovery		ms	0.5	

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Wiring schemes
Thru-beam system
M8 connector $\mathbf{- 4}$ pins

1 | $3(-)$ | |
| :--- | :--- |
| $1(+)$ | |
| 4 | 4 OUT/Output |

PNP

XUM2APXBM8

NPN

XUM2ANXBM8

Pre-cabled - 3 wires
(-) BU (Blue)
(+) BN (Brown)
OUT/Output BK (Black)

Polarised reflex, background suppression and diffuse systems

M8 connector - 4 pins

(1): Not connected

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Detection curves

Thru-beam system: XUM2
Lateral displacement

(1): Transmitter
(2): Receiver

Light beam diameter

Excess gain

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Detection curves

Polarised reflex system: XUM9
Reflector angle

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Detection curves (continued)
Background suppression system: XUM8
Lateral displacement (preset 100 mm)

(1): Sensor
(2): Object (200 mm square white and black mat paper)
X : Sensing distance (mm)
Y: Lateral displacement (mm)

Lateral displacement (preset 200 mm)

(1): Sensor
(2): Object (200 mm square white and black mat paper)
X : Sensing distance (mm)
Y: Lateral displacement (mm)

Photo-electric sensors
 XUM, general purpose, single mode function
 Miniature design, plastic
 Three-wire DC, solid-state output
 Potentiometer setting for NO/NC, sensitivity

Detection curves (continued)

Diffuse system: XUM4, XUM5 and XUM6
Object size/sensing distance

(1): Sensor
(2): Object (white mat paper of A mm square)

A: Side length (mm)
X: Sensing distance (mm)

Excess gain

Description, dimensions

Photo-electric sensors

XUM, general purpose, single mode function
Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Description, dimensions (continued)

Photo-electric sensors

XUM, general purpose, single mode function Miniature design, plastic
Three-wire DC, solid-state output
Potentiometer setting for NO/NC, sensitivity

Polarised reflex system

Pre-cabled version

Description - XUM9A॰XBL2

Dimensions - XUM9AXBL2

M8 connector version

Description - XUM9A॰XBM8

Dimensions - XUM9A॰XBM8

Background suppression system

Dimensions - XUM8A॰XBM8

Diffuse system

Description - XUM5A•XBL2, XUM6A॰XBL2,
XUM4A॰XBL2

Dimensions - XUM5A॰XBL2,
XUM6A॰XBL2,
XUM4A॰XBL2
$\begin{array}{r}\text { XUM4A•XBL2 } \\ \hline 19,5\end{array}$

Description - XUM5A॰XBM8,
XUM6A॰XBM8, XUM4A॰XBM8

Dimensions - XUM5A॰XBM8, XUM6A॰XBM8, XUM4A॰XBM8

(1) Output indicator (yellow)
(2) Setting potentiometer
(sensitivity
R: Reception.
T: Transmission.
(1) Setting potentiometer (sensitivity).
(2) Setting potentiometer (output).
(1) Output indicator (yellow)
(2) Setting potentiometer
(sensitivity
(3) Stability indicator (green).

R: Reception.
T: Transmission.
(1) Setting potentiometer (sensitivity).
(2) Setting potentiometer (output).

Photo-electric sensors

XUM, general purpose, single mode function Miniature design, plastic
Accessories

(1) 2 elongated holes $\varnothing 4.5 \times 8$

XUZC100

Diaphragms XUZDVM•e

XUZDHM••

XUZDRM••

Reference	a (mm)
XUZDVM05	0.5
XUZDVM10	1
XUZDVM20	2
XUZDHM05	0.5
XUZDHM10	1
XUZDHM20	2
XUZDRM05	$\varnothing 0.5$
XUZDRM10	$\varnothing 1$
XUZDRM20	$\varnothing 2$

Photo-electric sensors
XUM, general purpose, single mode function Miniature design, plastic
Accessories

Air blower mounting block

XUZASM05

Photo-electric sensors

XU range, single mode function
Design 18, plastic
Three-wire DC, solid-state output

XUBeA•eNL2

$X U B \bullet A \bullet \bullet W M 12$

XUZA118

XUZA218

XUZ2003

Connector					
Sensing distance (Sn) m	Function	Output	Line of sight	Reference	Weight kg
Diffuse system					
0.1	NO	PNP	Along case axis	XUB4APANM12	0.040
			90° to case axis	XUB4APAWM12	0.040
		NPN	Along case axis	XUB4ANANM12	0.040
			90° to case axis	XUB4ANAWM12	0.040
	NC	PNP	Along case axis	XUB4APBNM12	0.040
			90° to case axis	XUB4APBWM12	0.040
		NPN	Along case axis	XUB4ANBNM12	0.040
			90° to case axis	XUB4ANBWM12	0.040

| | | |
| :--- | :--- | :--- | :--- | :--- |
| Diffuse system with adjustable sensitivity | | |
| 0.6 | | |

0.6	NO	PNP	Along case axis	XUB5APANM12	0.045
			90° to case axis	XUB5APAWM12	0.050
		NPN	Along case axis	XUB5ANANM12	0.045
			90° to case axis	XUB5ANAWM12	0.050
	NC	PNP	Along case axis	XUB5APBNM12	0.045
			90° to case axis	XUB5APBWM12	0.050
		NPN	Along case axis	XUB5ANBNM12	0.045
			90° to case axis	XUB5ANBWM12	0.050
Polarised reflex system					
2	NO	PNP	Along case axis	XUB9APANM12	0.040
			90° to case axis	XUB9APAWM12	0.040
		NPN	Along case axis	XUB9ANANM12	0.040
			90° to case axis	XUB9ANAWM12	0.040
	NC	PNP	Along case axis	XUB9APBNM12	0.040
			90° to case axis	XUB9APBWM12	0.040
		NPN	Along case axis	XUB9ANBNM12	0.040
			90° to case axis	XUB9ANBWM12	0.040
Reflector $50 \times 50 \mathrm{~mm}$	-	-	-	XUZC50	0.020
Reflex system					
4	NO	PNP	Along case axis	XUB1APANM12	0.040
			90° to case axis	XUB1APAWM12	0.040
		NPN	Along case axis	XUB1ANANM12	0.040
			90° to case axis	XUB1ANAWM12	0.040
	NC	PNP	Along case axis	XUB1APBNM12	0.040
			90° to case axis	XUB1APBWM12	0.040
		NPN	Along case axis	XUB1ANBNM12	0.040
			90° to case axis	XUB1ANBWM12	0.040
Reflector	-	-	-	XUZC50	0.020

Thru-beam system					
Transmitter 15	-	-	Along case axis	XUB2AKSNM12T	0.040
			90° to case axis	XUB2AKSWM12T	0.040
Receiver15	NO	PNP	Along case axis	XUB2APANM12R	0.040
			90° to case axis	XUB2APAWM12R	0.040
		NPN	Along case axis	XUB2ANANM12R	0.040
			90° to case axis	XUB2ANAWM12R	0.040
	NC	PNP	Along case axis	XUB2APBNM12R	0.040
			90° to case axis	XUB2APBWM12R	0.040
		NPN	Along case axis	XUB2ANBNM12R	0.040
			90° to case axis	XUB2ANBWM12R	0.040
Fixing accessories (1)					
Description				Reference	Weight kg
3D fixing kit for use on M12 rod, for XUB or XUZC50				XUZB2003	0.170
M12 rod				XUZ2001	0.050
Support for M12 rod				XUZ2003	0.150
Stainless steel fixing bracket				XUZA118	0.045
Plastic fixing bracket with adjustable ball-joint				XUZA218	0.035

Pre-cabled

For a pre-cabled sensor, replace M12 by L2 for a 2 m long cable, or by $\mathbf{L 5}$ for a 5 m long cable. Example: XUB1APANM12 becomes XUB1APANL2 for a 2 m long cable and XUB1APANL5 for a 5 m long cable.
For availability, please consult our Customer Care Centre.
(1) For further information, see page 667.

Characteristics, schemes, curves, dimensions

Photo-electric sensors
XU range, single mode function
Design 18, plastic
Three-wire DC, solid-state output

Characteristics

Sensor type	
Product certifications	
Connection	Connector
	Pre-cabled
Sensing distance maximum nominal Sn / $($ excess gain = 2)	
Type of transmission	
Degree of protection	Conforming to IEC 60529
	Conforming to DIN 40050
Storage temperature	
Operating temperature	
Materials	Case
	Lens
	Cable
Vibration resistance	Conforming to IEC 60068-2-6
Shock resistance	Conforming to IEC 60068-2-27
Indicator lights	Output state
	Supply on
Rated supply voltage	
Voltage limits (including ripple)	
Current consumption, no-load	
Switching capacity	
Voltage drop, closed state	
Maximum switching frequency	
Delays	First-up
	Response
	Recovery

Wiring schemes

M12 connector
Pre-cabled PNP

	XUB1, XUB2, XUB4, XUB5, XUB9	XUB1, XUB2, XUB4, XUB5, XUB9
	UL, CSA, CE	
	M12	-
	-	Length: 2 m
m	0.1/0.15 diffuse	
m	0.6 / 0.8 diffuse with adjustable sensitivity	
m	$2 / 3$ polarised reflex	
m	4 / 5.5 reflex	
m	15/20 thru-beam	
	Infrared, except polarised reflex (red)	
	IP 65, IP 67, double insulation回	
	IP 69K for connector versions	
${ }^{\circ} \mathrm{C}$	-40... 70	
${ }^{\circ} \mathrm{C}$	-25... +55	
	PBT	
	PMMA	
	-	PvR
	7 gn , amplitude $\pm 1.5 \mathrm{~mm}$ ($\mathrm{f}=10$ to 55 Hz)	
	30 gn , duration 11 ms	
	Yellow LED (except for XUB2••***७T)	
	Green LED (only for XUB2•••७७७T)	
V	=-. 12... 24 with protection against reverse polarity	
V	=-- 10... 36	
mA	35	
mA	$\leqslant 100$ with overload and short-circuit protection	
V	1.5	
Hz	500	
ms	< 15	
ms	<1	
ms	<1	
PNP	NPN	Transmitter

(
(-) BU (Blue)
(+) BN (Brown) (OUT/Output) BK (Black) Beam break input (1) VI (Violet)

Please refer to our "Cabling accessories XZ" catalogue.

Input 2 NI :

- not connected: beam made - connected to -: beam broken

Detection curves
Thru-beam system

Diffuse system

Object $10 \times 10 \mathrm{~cm} ; 1$ White 90%; 2 Grey 18%

Reflex system

With reflector XUZC50

Polarised reflex system

With reflector XUZC50

Dimensions

XUB

	Pre-cabled (mm)		Connector (mm)	
	a	b	a	b
$\varnothing 18$, line of sight along case axis	46 (2)	28	60 (1)	28
$\varnothing 18$, line of sight 90° to case axis	62	28	76	28
Ø 18, line of sight along case axis XUB5	62	44	76	44
\varnothing 18, line of sight 90° to case axis XUB5	78	44	92	44

[^5](2) For XUB90e*ee (polarised reflex) 46 becomes 48 mm and 60 becomes 62 mm .

Photo-electric sensors

XU range, single mode function
Design 18, metal
Three-wire DC, solid-state output

XUB•BeゃWM12

XUZA118

XUZ2003

XUZA218

Connector					
Sensing distance (Sn) m	Function	Output	Line of sight	Reference	Weight kg
Diffuse system					
0.1	NO	PNP	Along case axis	XUB4BPANM12	0.050
			90° to case axis	XUB4BPAWM12	0.050
		NPN	Along case axis	XUB4BNANM12	0.050
			90° to case axis	XUB4BNAWM12	0.050
	NC	PNP	Along case axis	XUB4BPBNM12	0.050
			90° to case axis	XUB4BPBWM12	0.050
		NPN	Along case axis	XUB4BNBNM12	0.050
			90° to case axis	XUB4BNBWM12	0.050
Diffuse system with adjustable sensitivity					
0.6	NO	PNP	Along case axis	XUB5BPANM12	0.055
			90° to case axis	XUB5BPAWM12	0.060
		NPN	Along case axis	XUB5BNANM12	0.055
			90° to case axis	XUB5BNAWM12	0.060
	NC	PNP	Along case axis	XUB5BPBNM12	0.055
			90° to case axis	XUB5BPBWM12	0.060
		NPN	Along case axis	XUB5BNBNM12	0.055
			90° to case axis	XUB5BNBWM12	0.060
Polarised reflex system					
2	NO	PNP	Along case axis	XUB9BPANM12	0.050
			90° to case axis	XUB9BPAWM12	0.050
		NPN	Along case axis	XUB9BNANM12	0.050
			90° to case axis	XUB9BNAWM12	0.050
	NC	PNP	Along case axis	XUB9BPBNM12	0.050
			90° to case axis	XUB9BPBWM12	0.050
		NPN	Along case axis	XUB9BNBNM12	0.050
			90° to case axis	XUB9BNBWM12	0.050
Reflector $50 \times 50 \mathrm{~mm}$	-	-	-	XUZC50	0.020
Reflex system					
4	NO	PNP	Along case axis	XUB1BPANM12	0.050
			90° to case axis	XUB1BPAWM12	0.050
		NPN	Along case axis	XUB1BNANM12	0.050
			90° to case axis	XUB1BNAWM12	0.050
	NC	PNP	Along case axis	XUB1BPBNM12	0.050
			90° to case axis	XUB1BPBWM12	0.050
		NPN	Along case axis	XUB1BNBNM12	0.050
			90° to case axis	XUB1BNBWM12	0.050
Reflector $50 \times 50 \mathrm{~mm}$	-	-	-	XUZC50	0.020
Thru-beam system					
Transmitter 15	-	-	Along case axis	XUB2BKSNM12T	0.050
			90° to case axis	XUB2BKSWM12T	0.050
Receiver 15	NO	PNP	Along case axis	XUB2BPANM12R	0.050
			90° to case axis	XUB2BPAWM12R	0.050
		NPN	Along case axis	XUB2BNANM12R	0.050
			90° to case axis	XUB2BNAWM12R	0.050
	NC	PNP	Along case axis	XUB2BPBNM12R	0.050
			90° to case axis	XUB2BPBWM12R	0.050
		NPN	Along case axis	XUB2BNBNM12R	0.050
			90° to case axis	XUB2BNBWM12R	0.050
Fixing accessories (1)					
Description				Reference	Weight kg
3D fixing kit for use on M12 rod, for XUB or XUZC50				XUZB2003	0.170
M12 rod				XUZ2001	0.050
Support for M12 rod				XUZ2003	0.150
Stainless steel fixing bracket				XUZA118	0.045
Plastic fixing bracket with adjustable ball-joint				XUZA218	0.035
Pre-cabled					

For a pre-cabled sensor, replace M12 by L2 for a 2 m long cable, or by $\mathbf{L 5}$ for a 5 m long cable. Example: XUB1BPANM12 becomes XUB1BPANL2 for a 2 m long cable and XUB1BPANL5 for a 5 m long cable.
For availability, please consult our Customer Care Centre.
(1) For further information, see page 69.

Characteristics, schemes, curves, dimensions

Photo-electric sensors
XU range, single mode function
Design 18, metal
Three-wire DC, solid-state output

(
(-) BU (Blue)
(+) BN (Brown)
(OUT/Output) BK (Black)
Beam break input (1)
VI (Violet)

Please refer to our "Cabling accessories XZ" catalogue.

Detection curves

Thru-beam system
Diffuse system
Diffuse system with
Reflex system adjustable sensitivity

Input 2/VI:

- not connected: beam made - connected to -: beam broken

Polarised reflex system

With reflector XUZC50

Object $10 \times 10 \mathrm{~cm}$; 1 White 90\%; 2 Grey 18\%

With reflector XUZC50

Dimensions

XUB

(1) Beam break input on thru-beam transmitter only.
(2) For XUB900ee้ (polarised reflex) 46 becomes 48 mm and 60 becomes 62 mm .

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body, stainless steel fluid entry With analogue output

XMLP pressure transmitters AISI 316L stainless steel casing

Presentation
 XMLP pressure transmitters rated at less than 9 bar or 100 psi

These transmitters integrate a ceramic pressure measuring cell. Ceramic technology has been used successfully for many years and offers a high level of sensitivity that is particularly suitable for measuring low pressures.

Ceramic also provides good resistance to abrasive fluids.
An internal fluorocarbon rubber gasket provides the seal between the ceramic measuring cell and the AISI 316L stainless steel casing.

Pressure transmitters can be used to measure the following types of pressure:
■ air

- fresh water
- the majority of hydraulic oils

It is important, however, to ensure that the gasket is compatible with the fluid being controlled.

These transmitters can control fluids ranging in temperature from -15 to $125^{\circ} \mathrm{C}$.

Their power supply (1) depends on the type of analogue output:
■ $5 \mathrm{~V}+/-10 \%$ for the $0.5 \ldots 4.5 \mathrm{~V}$ ratiometric output
■ 12 or 24 V (nominal), operating from 7 to 33 V for the $4 \ldots 20 \mathrm{~mA}$ output

- 24 V (nominal), operating from 12 to 33 V for the $0 \ldots 10 \mathrm{~V}$ output

XMLP pressure transmitters rated greater than or equal to 9 bar or 100 psi

These transmitters integrate a metal pressure measuring cell.
This measuring cell, which is welded directly onto the AISI 316L stainless steel transmitter body, offers the following advantages:

- An all-metal pressure chamber, with no elastomer gasket in contact with the fluid

■ Compatibility with a large number of fluids:

- air
- fresh water
\square hydraulic oils
- refrigeration fluids
- all fluids or gases compatible with AISI 316L stainless steel

XMLP pressure transmitters can control fluids ranging in temperature from -30 to $120^{\circ} \mathrm{C}$.

Their power supply (1) depends on the type of analogue output:
■ $5 \mathrm{~V}+/-10 \%$ for the $0.5 \ldots .4 .5 \mathrm{~V}$ ratiometric output

- 12 or 24 V (nominal), operating from 7 to 33 V for the $4 \ldots 20 \mathrm{~mA}$ output
- 24 V (nominal), operating from 12 to 33 V for the $0 \ldots 10 \mathrm{~V}$ output

General characteristics

Made of stainless steel, XMLP pressure transmitters are compact and rugged.
Their degree of protection varies according to the type of connector:
■ IP 65 for EN 175301-803-A connector versions

- IP 65 and IP 67 for Packard Metri-Pack connector versions

■ IP 65, IP 67 and IP 69K for M12 connector versions

With typical precision better than 0.5% of the rating, these transmitters are particularly suitable for industrial applications such as:

- machine tools
- moulding presses
- stamping presses
- lifting gear

■ HVAC systems (for ratings greater than or equal to 9 bar or 100 psi only)
(1) Use Safety Extra Low Voltage (SELV) or Protected Extra Low Voltage (PELV) power supply.

Functions

Electronic pressure sensors
 XM Range
 XMLP pressure transmitters
 Compact metal body, stainless steel fluid entry With analogue output.

Functions

XMLP pressure transmitters have an analogue output which delivers a signal proportional to the measured pressure.
This output can be one of the following types:

- $4 . . .20 \mathrm{~mA}$
- $0 . .10 \mathrm{~V}$
- 0.5... 4.5 V ratiometric

The pressure ranges available are:

- vacuum measuring
- -1 ... 0 bar
- -14.5... 0 psi

■ pressure measuring

- 0... 600 bar
- 0...6,000 psi
- combined pressure measuring (vacuum and pressure)
- $-1 . . .25$ bar
- -14.5... 60 psi

The XMLP offer is available with four types of electrical connection:

- M12, 4-pin connector

■ EN 175301-803-A (ex DIN 43650) connector

- Packard Metri-Pack 150 connector

■ 2 m PVC cable

Several types of fluid connection are available:

- G1/4 A male
- 1/4"-18NPT male
- SAE 7/16-20UNF-2A male
- SAE 7/16-20UNF-2B female (with or without Schrader pin depending on the model)

Depending on the model, XMLP transmitters are sold:

- individually
- in lots of 25

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry With analogue output. Sizes in bar

-1 to 0 bar (-14.5 to 0 psi)			
Maximum permissible accidental pressure: 3 bar, destruction pressure: 5 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLPM00GD21F (1)	0.080
	EN 175301-803-A	XMLPM00GC21F (1)	0.096
	2 m cable	XMLPM00GL21F	0.197
$0 . . .10 \mathrm{~V}$	M12	XMLPM00GD71F (1)	0.080
	EN 175301-803-A	XMLPM00GC71F (1)	0.096
	2 m cable	XMLPM00GL71F	0.197
0.5...4.5 V ratiometric	M12	XMLPM00GD11F	0.080
	EN 175301-803-A	XMLPM00GC11F	0.096
SAE 7/16-20UNF-2B (female) fluid connection			
4... 20 mA	M12	XMLPM00GD2BF	0.080
	EN 175301-803-A	XMLPM00GC2BF	0.096
$0 . .10 \mathrm{~V}$	M12	XMLPM00GD7BF	0.080
	EN 175301-803-A	XMLPM00GC7BF	0.096

-1 to 1 bar (-14.5 to 14.5 psi)			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLPM01GD21F (1)	0.080
	EN 175301-803-A	XMLPM01GC21F (1)	0.096
0...10 V	M12	XMLPM01GD71F	0.080
	EN 175301-803-A	XMLPM01GC71F	0.096

-1 to 5 bar (-14.5 to 72.6 psi)			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLPM05GD21F (1)	0.080
	EN 175301-803-A	XMLPM05GC21F (1)	0.096
$0 . . .10 \mathrm{~V}$	M12	XMLPM05GD71F	0.080
	EN 175301-803-A	XMLPM05GC71F	0.096

[^6]Electronic pressure sensors
XM Range
XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry
With analogue output. Sizes in bar

XMLPM••BD•1F

XMLPMeャBC•1F

- 1 to 9 bar (-14.5 to 130 psi)			
Maximum permissible accidental pressure: 30 bar, destruction pressure: 60 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLPM09BD21F (1)	0.090
	EN 175301-803-A	XMLPM09BC21F	0.106
$0 \ldots 10 \mathrm{~V}$	M12	XMLPM09BD71F (1)	0.090
	EN 175301-803-A	XMLPM09BC71F	0.106
0.5...4.5 V ratiometric	M12	XMLPM09BD11F	0.090

- 1 to 25 bar (-14.5 to 362.5 psi)			
Maximum permissible accidental pressure: 75 bar, destruction pressure: 150 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLPM25BD21F	0.090

[^7]References（continued）

Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body，316L stainless steel fluid entry
With analogue output．Sizes in bar

XMLP•eッロD•1F

XMLP•eッeC•1F

XMLP001GC•BF

XMLP001GL•1F

XMLP001GD•BF

0 to 0.25 bar（0 to 3.63 psi）			
Maximum permissible accidental pressure： 3 bar，destruction pressure： 5 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
4．．． 20 mA	M12	XMLP250MD21F（1）	0.080
	EN 175301－803－A	XMLP250MC21F（1）	0.096
$0 . . .10 \mathrm{~V}$	M12	XMLP250MD71F（1）	0.080
	EN 175301－803－A	XMLP250MC71F（1）	0.096
0．5．．4．5 V ratiometric	M12	XMLP250MD11F	0.080
	EN 175301－803－A	XMLP250MC11F	0.096

0 to 0.5 bar（0 to 7.26 psi ）			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
4．．． 20 mA	M12	XMLP500MD21F（1）	0.080
	EN 175301－803－A	XMLP500MC21F（1）	0.096
$0 . .10 \mathrm{~V}$	M12	XMLP500MD71F（1）	0.080
	EN 175301－803－A	XMLP500MC71F（1）	0.096
0．5．．．4．5 V ratiometric	M12	XMLP500MD11F	0.080
	EN 175301－803－A	XMLP500MC11F	0.096

0 to 1 bar（0 to 14.5 psi ）			
Maximum permissible accidental pressure： 3 bar，destruction pressure： 5 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
$4 . . .20 \mathrm{~mA}$	M12	XMLP001GD21F（1）	0.080
	EN 175301－803－A	XMLP001GC21F（1）	0.096
	2 m cable	XMLP001GL21F	0.197
$0 . .10 \mathrm{~V}$	M12	XMLP001GD71F（1）	0.080
	EN 175301－803－A	XMLP001GC71F（1）	0.096
	2 m cable	XMLP001GL71F	0.197
0．5．．．4．5 V ratiometric	M12	XMLP001GD11F（1）	0.080
	EN 175301－803－A	XMLP001GC11F	0.096

SAE 7／16－20UNF－2B（female）fluid connection

$4 \ldots . .20 \mathrm{~mA}$	M12	XMLP001GD2BF	0.080
	EN 175301－803－A	XMLP001GC2BF	0.096
$0 \ldots 10 \mathrm{~V}$	M12	XMLP001GD7BF	0.080
	EN 175301－803－A	XMLP001GC7BF	0.096

（1）Sold in lots of 25：add the letter Q to the end of the selected reference．
For example，XMLP250MD21F becomes XMLP250MD21FQ．

References（continued）

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body，316L stainless steel fluid entry
With analogue output．Sizes in bar

0 to 2.5 bar（0 to 36.3 psi）			
Maximum permissible accidental pressure： 7.5 bar，destruction pressure： 10 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
4．．． 20 mA	M12	XMLP2D5GD21F（1）	0.080
	EN 175301－803－A	XMLP2D5GC21F（1）	0.096
	2 m cable	XMLP2D5GL21F	0.197
$0 . .10 \mathrm{~V}$	M12	XMLP2D5GD71F（1）	0.080
	EN 175301－803－A	XMLP2D5GC71F（1）	0.096
	2 m cable	XMLP2D5GL71F	0.197
0．5．．．4．5 V ratiometric	M12	XMLP2D5GD11F	0.080
	EN 175301－803－A	XMLP2D5GC11F	0.096

0 to 4 bar（0 to 58 psi ）			
Maximum permissible accidental pressure： 12 bar，destruction pressure： 16 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
$4 . .20 \mathrm{~mA}$	M12	XMLP004GD21F（1）	0.080
	EN 175301－803－A	XMLP004GC21F（1）	0.096
$0 . .10 \mathrm{~V}$	M12	XMLP004GD71F（1）	0.080
	EN 175301－803－A	XMLP004GC71F（1）	0.096
0．5．．．4．5 V ratiometric	M12	XMLP004GD11F	0.080
	EN 175301－803－A	XMLP004GC11F	0.096

0 to 6 bar（0 to 87 psi ）			
Maximum permissible accidental pressure： 18 bar，destruction pressure： 24 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1／4 A DIN 3852－E（male）fluid connection			
4．．． 20 mA	M12	XMLP006GD21F（1）	0.080
	EN 175301－803－A	XMLP006GC21F（1）	0.096
	2 m cable	XMLP006GL21F	0.197
0．．．10 V	M12	XMLP006GD71F（1）	0.080
	EN 175301－803－A	XMLP006GC71F（1）	0.096
	2 m cable	XMLP006GL71F	0.197
0．5．．．4．5 V ratiometric	M12	XMLP006GD11F（1）	0.080
	EN 175301－803－A	XMLP006GC11F	0.096

[^8]References (continued)

Electronic pressure sensors
XM Range
XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry With analogue output. Sizes in bar

XMLP01•BC•1F

XMLP01•BC270

XMLP01•BC•90

XMLP01•BD•90

0 to 10 bar (0 to 145 psi)			
Maximum permissible accidental pressure: 30 bar, destruction pressure: 60 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLP010BD21F (1)	0.090
	EN 175301-803-A	XMLP010BC21F (1)	0.106
$0 . .10 \mathrm{~V}$	M12	XMLP010BD71F (1)	0.090
	EN 175301-803-A	XMLP010BC71F (1)	0.106
0.5...4.5 V ratiometric	M12	XMLP010BD11F	0.090
	EN 175301-803-A	XMLP010BC11F	0.106
SAE 7/16-20UNF-2A (male) fluid connection			
4... 20 mA	M12	XMLP010BD270	0.087
	EN 175301-803-A	XMLP010BC270	0.103

SAE 7/16-20UNF-2B (female with Schrader pin) fluid connection

$4 \ldots .20 \mathrm{~mA}$	M12	XMLP010BD290 (1)	0.100
	EN 175301-803-A	XMLP010BC290	0.116
$0 \ldots 10 \mathrm{~V}$	M12	XMLP010BD790	0.100
	EN 175301-803-A	XMLP010BC790	0.116
$0.5 \ldots 4.5 \mathrm{~V}$ ratiometric	M12	XMLP010BD190	0.100

0 to 16 bar (0 to 232 psi)

Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLP016BD21F (1)	0.090
	EN 175301-803-A	XMLP016BC21F (1)	0.106
$0 . .10 \mathrm{~V}$	M12	XMLP016BD71F (1)	0.090
	EN 175301-803-A	XMLP016BC71F (1)	0.106
0.5...4.5 V ratiometric	M12	XMLP016BD11F	0.090
	EN 175301-803-A	XMLP016BC11F	0.106

SAE 7/16-20UNF-2A (male) fluid connection		
$4 \ldots 20 \mathrm{~mA}$	M12	XMLP016BD270
	EN 175301-803-A	XMLP016BC270

SAE 7/16-20UNF-2B (female with Schrader pin) fluid connection

$4 \ldots 20 \mathrm{~mA}$	M12	XMLP016BD290	0.100
	EN 175301-803-A	XMLP016BC290	0.116
$0 \ldots 10 \mathrm{~V}$	M12	XMLP016BD790	0.100
$0.5 \ldots 4.5 \mathrm{~V}$ ratiometric	M12	XMLP016BD190	0.100

(1) Sold in lots of 25: add the letter Q to the end of the selected reference.

For example, XMLP016BD21F becomes XMLP016BD21FQ.

References (continued)

Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry
With analogue output. Sizes in bar

0 to 25 bar (0 to 362.5 psi)			
Maximum permissible accidental pressure: 75 bar, destruction pressure: 150 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
$4 \ldots 20 \mathrm{~mA}$	M12	XMLP025BD21F	0.090
	EN 175301-803-A	XMLP025BC21F	0.106
$0 \ldots 10 \mathrm{~V}$	M12	XMLP025BD71F (1)	0.090
	EN 175301-803-A	XMLP025BC71F	0.106
0.5...4.5 V ratiometric	M12	XMLP025BD11F	0.090
	EN 175301-803-A	XMLP025BC11F	0.106
SAE 7/16-20UNF-2A (male) fluid connection			
4... 20 mA	M12	XMLP025BD270	0.087
	EN 175301-803-A	XMLP025BC270	0.103
$0 \ldots 10 \mathrm{~V}$	M12	XMLP025BD770	0.087

SAE 7/16-20UNF-2B (female with Schrader pin) fluid connection

$4 \ldots 20 \mathrm{~mA}$	M12	XMLP025BD290	0.100
	EN 175301-803-A	XMLP025BC290	0.116
$0 \ldots 10 \mathrm{~V}$	M12	XMLP025BD790	0.100

0 to 40 bar (0 to 580 psi)			
Maximum permissible accidental pressure: 120 bar, destruction pressure: 240 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-E (male) fluid connection			
4... 20 mA	M12	XMLP040BD21F (1)	0.090
	EN 175301-803-A	XMLP040BC21F	0.106
$0 \ldots 10 \mathrm{~V}$	M12	XMLP040BD71F	0.090
	EN 175301-803-A	XMLP040BC71F	0.106
0.5...4.5 V ratiometric	M12	XMLP040BD11F	0.090
	EN 175301-803-A	XMLP040BC11F	0.106
SAE 7/16-20UNF-2A (male) fluid connection			
4... 20 mA	M12	XMLP040BD270	0.087
	EN 175301-803-A	XMLP040BC270	0.103

SAE 7/16-20UNF-2B (female with Schrader pin) fluid connection

$4 \ldots 20 \mathrm{~mA}$	M12	XMLP040BD290 (1)	0.100
	EN 175301-803-A	XMLP040BC290 (1)	0.116
$0 \ldots 10 \mathrm{~V}$	M12	XMLP040BD790	0.100
$0.5 \ldots 4.5 \mathrm{~V}$ ratiometric	M12	XMLP040BD190	0.100

[^9]References (continued)

Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry With analogue output. Sizes in bar

XMLPeeeBC•1F

XMLP060BC290

XMLP060BD•90

0 to 60 bar (0 to 870 psi)			
Maximum permissible accidental pressure: 180 bar, destruction pressure: 360 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-A (male) fluid connection			
4... 20 mA	M12	XMLP060BD21F (1)	0.090
	EN 175301-803-A	XMLP060BC21F	0.106
$0 . . .10 \mathrm{~V}$	M12	XMLP060BD71F (1)	0.090
	EN 175301-803-A	XMLP060BC71F (1)	0.106
0.5...4.5 V ratiometric	M12	XMLP060BD11F	0.090
	EN 175301-803-A	XMLP060BC11F	0.106

SAE 7/16-20UNF-2A (male) fluid connection
$4 \ldots 20 \mathrm{~mA}$ M12 XMLP060BD270 0.087

SAE 7/16-20UNF-2B (female with Schrader pin) fluid connection

$4 \ldots 20 \mathrm{~mA}$	M12	XMLP060BD290	0.100
	EN 175301-803-A	XMLP060BC290	0.116
$0 . .10 \mathrm{~V}$	M12	XMLP060BD790	0.100

0 to 100 bar (0 to 1450 psi)

Maximum permissible accidental pressure: $\mathbf{3 0 0}$ bar, destruction pressure: $\mathbf{6 0 0}$ bar

Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-A (male) fluid connection			
$4 \ldots 20 \mathrm{~mA}$	M12	XMLP100BD21F (1)	0.094
	EN 175301-803-A	XMLP100BC21F	0.110
$0 \ldots 10 \mathrm{~V}$	M12	XMLP100BD71F (1)	0.094
	EN 175301-803-A	XMLP100BC71F	0.110
$0.5 \ldots 4.5 \mathrm{~V}$ ratiometric	M12	XMLP100BD11F	0.094
	EN 175301-803-A	XMLP100BC11F	0.110

(1) Sold in lots of 25: add the letter Q to the end of the selected reference.

For example, XMLP060BD21F becomes XMLP060BD21FQ.

Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry
With analogue output. Sizes in bar

XMLP•••BC•1F

XMLP•••BD•1F

0 to 160 bar (0 to 2320 psi)			
Maximum permissible accidental pressure: 480 bar, destruction pressure: 960 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-A (male) fluid connection			
4... 20 mA	M12	XMLP160BD21F	0.094
	EN 175301-803-A	XMLP160BC21F	0.110
$0 . .10 \mathrm{~V}$	M12	XMLP160BD71F	0.094
	EN 175301-803-A	XMLP160BC71F	0.110
0.5...4.5 V ratiometric	M12	XMLP160BD11F	0.094

0 to 250 bar (0 to 3625 psi)

Maximum permissible accidental pressure: 750 bar, destruction pressure: 1500 bar
$\left.\begin{array}{llll}\begin{array}{l}\text { Analogue } \\ \text { output type }\end{array} & \begin{array}{l}\text { Electrical } \\ \text { connection }\end{array} & \text { Reference }\end{array} \quad \begin{array}{r}\text { Weight } \\ \text { kg }\end{array}\right]$

0 to 400 bar (0 to 5800 psi)			
Maximum permissible accidental pressure: 1200 bar, destruction pressure: 2400 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-A (male) fluid connection			
4... 20 mA	M12	XMLP400BD21F (1)	0.094
	EN 175301-803-A	XMLP400BC21F (1)	0.110
0... 10 V	M12	XMLP400BD71F	0.094
	EN 175301-803-A	XMLP400BC71F (1)	0.110
0.5...4.5 V ratiometric	M12	XMLP400BD11F	0.094
	EN 175301-803-A	XMLP400BC11F	0.110

0 to 600 bar (0 to 8700 psi)			
Maximum permissible accidental pressure: 1500 bar, destruction pressure: 2400 bar			
Analogue output type	Electrical connection	Reference	Weight kg
G 1/4 A DIN 3852-A (male) fluid connection			
4... 20 mA	M12	XMLP600BD21F	0.094
	EN 175301-803-A	XMLP600BC21F	0.110
$0 \ldots 10 \mathrm{~V}$	M12	XMLP600BD71F	0.094
	EN 175301-803-A	XMLP600BC71F	0.110
0.5...4.5 V ratiometric	M12	XMLP600BD11F	0.094

[^10]
Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body, 316 L stainless steel fluid entry With analogue output. Sizes in psi

XMLP•••RC•3F

XMLP•••RP•3F

-14.5 to 0 psi (-1 to 0 bar)			
Maximum permissible accidental pressure: 44 psi , destruction pressure: 73 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
$4 . . .20 \mathrm{~mA}$	M12	XMLPM00RD23F (1)	0.078
	EN 175301-803-A	XMLPM00RC23F	0.094
	Packard Metri-Pack 150	XMLPM00RP23F	0.080
$0 \ldots 10 \mathrm{~V}$	M12	XMLPM00RD73F (1)	0.078
	EN 175301-803-A	XMLPM00RC73F	0.094
	Packard Metri-Pack 150	XMLPM00RP73F	0.080
0.5...4.5 V ratiometric	M12	XMLPM00RD13F	0.078
	EN 175301-803-A	XMLPM00RC13F	0.094
	Packard Metri-Pack 150	XMLPM00RP13F	0.080

-14.5 to 15 psi (-1 to 1.03 bar)			
Maximum permissible accidental pressure: 44 psi , destruction pressure: 73 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLPM15RD23F (1)	0.078
	EN 175301-803-A	XMLPM15RC23F	0.094
	Packard Metri-Pack 150	XMLPM15RP23F (1)	0.080
$0 \ldots 10 \mathrm{~V}$	M12	XMLPM15RD73F (1)	0.078

-14.5 to 60 psi (-1 to 4.14 bar)			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLPM60RD23F (1)	0.078
	EN 175301-803-A	XMLPM60RC23F	0.094
	Packard Metri-Pack 150	XMLPM60RP23F	0.080
$0 . . .10 \mathrm{~V}$	M12	XMLPM60RD73F (1)	0.078

Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry
With analogue output. Sizes in psi

XMLP•••RC•3F

XMLP•••RP•3F

0 to 15 psi (0 to 1.03 bar)			
Maximum permissible accidental pressure: 44 psi , destruction pressure: 73 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP015RD23F (1)	0.078
	EN 175301-803-A	XMLP015RC23F	0.094
	Packard Metri-Pack 150	XMLP015RP23F	0.080
$0 . .10 \mathrm{~V}$	M12	XMLP015RD73F (1)	0.078
	EN 175301-803-A	XMLP015RC73F	0.094
	Packard Metri-Pack 150	XMLP015RP73F	0.080

0 to 30 psi (0 to 2.07 bar)			
Maximum permissible accidental pressure: 109 psi , destruction pressure: 145 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP030RD23F (1)	0.078
	EN 175301-803-A	XMLP030RC23F	0.094
	Packard Metri-Pack 150	XMLP030RP23F	0.080
$0 . .10 \mathrm{~V}$	M12	XMLP030RD73F (1)	0.078
	EN 175301-803-A	XMLP030RC73F	0.094
	Packard Metri-Pack 150	XMLP030RP73F	0.080

0 to 50 psi (0 to 3.45 bar)
Maximum permissible accidental pressure: 174 psi , destruction pressure: $\mathbf{2 3 2} \mathbf{~ p s i}$

Analogue output type	Electrical connection	Reference	Weight kg
$\mathbf{1 / 4 "}-18 \mathrm{NPT}$ (male) fluid connection			
$4 \ldots 20 \mathrm{~mA}$	M12	XMLP050RD23F (1)	0.078
	EN 175301-803-A	XMLP050RC23F	0.094
	Packard Metri-Pack 150	XMLP050RP23F	0.080
$0 \ldots 10 \mathrm{~V}$	M12	XMLP050RD73F (1)	0.078

0 to 100 psi (0 to 6.9 bar)			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP100RD23F	0.078
$0 . . .10 \mathrm{~V}$	M12	XMLP100RD73F	0.078

[^11]
Electronic pressure sensors

XM Range

XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry With analogue output. Sizes in psi

XMLP•e0PP•30

0 to 100 psi (0 to 6.9 bar)			
Maximum permissible accidental pressure: $\mathbf{3 0 0} \mathrm{psi}$, destruction pressure: 900 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP100PD230 (1)	0.088
	Packard Metri-Pack 150	XMLP100PP230 (1)	0.090
$0 . . .10 \mathrm{~V}$	M12	XMLP100PD730	0.088
	Packard Metri-Pack 150	XMLP100PP730	0.090
0.5...4.5 V ratiometric	M12	XMLP100PD130	0.088
	Packard Metri-Pack 150	XMLP100PP130	0.090

0 to 150 psi (0 to 10.3 bar)
Maximum permissible accidental pressure: 450 psi , destruction pressure: 900 psi

Analogue output type	Electrical connection	Reference	Weight kg
$\mathbf{1 / 4 "}-18 \mathrm{NPT}$ (male) fluid connection	XMLP150PD230 (1)	0.088	
$4 \ldots 20 \mathrm{~mA}$	M12	Packard Metri-Pack 150	XMLP150PP230

0 to 200 psi (0 to 13.8 bar)

Maximum permissible accidental pressure: 600 psi , destruction pressure: 1400 psi

Analogue output type	Electrical connection	Reference	Weight $\mathbf{k g}$
$\mathbf{1 / 4 " - 1 8 N P T}$ (male) fluid connection			
$4 \ldots 20 \mathrm{~mA}$	M12	XMLP200PD230 (1)	0.088
	Packard Metri-Pack 150	XMLP200PP230	0.090
$0 \ldots 10 \mathrm{~V}$	M12	XMLP200PD730	0.088
	Packard Metri-Pack 150	XMLP200PP730	0.090
$0.5 \ldots 4.5 \mathrm{~V}$ ratiometric	M12	XMLP200PD130	0.088

[^12]References (continued)

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry
With analogue output. Sizes in psi

0 to 300 psi (0 to 20.7 bar)			
Maximum permissible accidental pressure: 900 psi , destruction pressure: $\mathbf{2 2 0 0} \mathrm{psi}$			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP300PD230 (1)	0.088
	Packard Metri-Pack 150	XMLP300PP230	0.090
$0 \ldots 10 \mathrm{~V}$	M12	XMLP300PD730	0.088
	Packard Metri-Pack 150	XMLP300PP730	0.090
0.5...4.5 V ratiometric	M12	XMLP300PD130	0.088
	Packard Metri-Pack 150	XMLP300PP130	0.090

0 to 600 psi (0 to 41.4 bar)			
Maximum permissible accidental pressure: 1800 psi, destruction pressure: $\mathbf{3 6 0 0} \mathrm{psi}$			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP600PD230	0.088
	Packard Metri-Pack 150	XMLP600PP230 (1)	0.090
$0 \ldots 10 \mathrm{~V}$	M12	XMLP600PD730	0.088
	Packard Metri-Pack 150	XMLP600PP730	0.090
0.5...4.5 V ratiometric	M12	XMLP600PD130	0.088
	Packard Metri-Pack 150	XMLP600PP130	0.090

0 to 1000 psi (0 to 69 bar)			
Maximum permissible accidental pressure: 3000 psi , destruction pressure: 6000 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP1K0PD230	0.088
	Packard Metri-Pack 150	XMLP1K0PP230	0.090
$0 . .10 \mathrm{~V}$	M12	XMLP1K0PD730	0.088
	Packard Metri-Pack 150	XMLP1K0PP730	0.090
0.5...4.5 V ratiometric	M12	XMLP1K0PD130	0.088

(1) Sold in lots of 25: add the letter Q to the end of the selected reference.

For example, XMLP600PP230 becomes XMLP600PP230Q.

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Compact metal body, 316L stainless steel fluid entry With analogue output. Sizes in psi

XMLP•KOPP•30

0 to 2000 psi (0 to 138 bar)			
Maximum permissible accidental pressure: $\mathbf{6 0 0 0} \mathrm{psi}$, destruction pressure: 12000 psi			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP2K0PD230	0.092
$0 . .10 \mathrm{~V}$	M12	XMLP2K0PD730	0.092
0.5...4.5 V ratiometric	M12	XMLP2K0PD130	0.092

0 to 3000 psi (0 to 207 bar)			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP3K0PD230	0.092
	Packard Metri-Pack 150	XMLP3K0PP230	0.094
$0 . . .10 \mathrm{~V}$	M12	XMLP3K0PD730 (1)	0.092
	Packard Metri-Pack 150	XMLP3K0PP730	0.094
0.5...4.5 V ratiometric	M12	XMLP3K0PD130	0.092

0 to 6000 psi (0 to 414 bar)			
Maximum permissible accidental pressure: 18000 psi , destruction pressure: $\mathbf{3 6 0 0 0} \mathbf{~ p s i}$			
Analogue output type	Electrical connection	Reference	Weight kg
1/4" - 18NPT (male) fluid connection			
4... 20 mA	M12	XMLP6K0PD230	0.092
$0 \ldots 10 \mathrm{~V}$	M12	XMLP6K0PD730	0.092
	Packard Metri-Pack 150	XMLP6K0PP730	0.094
0.5...4.5 V ratiometric	M12	XMLP6K0PD130	0.092
	Packard Metri-Pack 150	XMLP6K0PP130 (1)	0.094

(1) Sold in lots of 25: add the letter Q to the end of the selected reference.

For example, XMLP6K0PP130 becomes XMLP6K0PP130Q.

Electronic pressure sensors

XM Range
XMLP pressure transmitters
Separate parts

ZMLPA1•2SH

XZCC12FCM40B

XZCC12FDM40B

XZCP1241L5 XZCP1141L10

XMLEZ・ャ・

XMLZL017

Switches with display for XMLPゃゃゃ०D2ゃゃ pressure transmitters （1）				
Analogue output type	Solid－state output type	Switching mode	Reference	Weight kg
$4 . . .20 \mathrm{~mA}$	1 xPNP	Hysteresis	ZMLPA1P2SH	0.104
		Window	ZMLPA1P2SW	0.104
	$1 \times$ NPN	Hysteresis	ZMLPA1N2SH	0.104
		Window	ZMLPA1N2SW	0.104
－	$2 \times \mathrm{PNP}$	Hysteresis	ZMLPA2P0SH	0.104
－	$2 \times$ NPN	Hysteresis	ZMLPA2N0SH	0.104

Accessories						
Description		Type		Reference	Weight kg	
Sealing gasket （Pack of 10 gaskets）		－		XMLZL016	0.025	
M12 female connector metal clamping ring（2）		Straight		XZCC12FDM40B	0.020	
		Elbowed		XZCC12FCM40B	0.020	
EN 175301－803－A female connector（2）		－		XZCC43FCP40B	0.035	
Description		Cable length	Cable material	Reference	Weight kg	
Pre－wired M12，straight，female connectors		2 m	PUR	XZCP1141L2	0.090	
		PVC	XZCPV1141L2	0.110		
		5 m	PUR	XZCP1141L5	0.190	
		PVC	XZCPV1141L5	0.210		
		10 m	PUR	XZCP1141L10	0.370	
		PVC	XZCPV1141L10	0.390		
Pre－wired M12，elbowed，female connectors			2 m	PUR	XZCP1241L2	0.090
		PVC		XZCPV1241L2	0.110	
		5 m	PUR	XZCP1241L5	0.190	
		PVC	XZCPV1241L5	0.210		
		10 m	PUR	XZCP1241L10	0.370	
		PVC	XZCPV1241L10	0.390		
Description	For use with		Size of transmitter		Reference	Weight
		bar			kg	
Digital displays for pressure transmitters	XMLPM00GC2••	－1．．．0		XMLEZM01	0.100	
	XMLP001GC2••	0．．． 1		XMLEZ001	0.100	
	XMLP010BC2••	0．．． 10		XMLEZ010	0.100	
	XMLP025BC2••	0．．． 25		XMLEZO25	0.100	
	XMLP060BC2••	0．．． 60		XMLEZO60	0.100	
	XMLP100BC2••	0．．． 100		XMLEZ100	0.100	
	XMLP250BC2••	0．．． 250		XMLEZ250	0.100	
	XMLP600BC2••	0．．． 600		XMLEZ600	0.100	
Fixing bracket （aluminium）	XMLP•••M••• XMLP•••G••• XMLP•••R••••	－		XMLZL017	0.029	

（1）ZMLP switches are compatible with pressure transmitters with $4 \ldots 20 \mathrm{~mA}$ analogue output and M12 connector（see pages 87 and 88 ）．
（2）Connector with screw terminal connections．
Note：For other connection accessories，visit our website www．tesensors．com．

Electromechanical pressure switches XM Range
 For power circuits, FTG, FSG and FYG Range

Presentation

Pressure switches FTG, FSG and FYG are switches for power circuits. They are used to control the pressure of water, up to 10.5 bar

2 types of product are available:

- pressure switches FTG with fixed differential, for detection of a single threshold, - pressure switches FSG and FYG with an adjustable differential, for regulation between 2 thresholds.

For specific needs, these 2 types of product can be supplied in IP 65 versions, thus ensuring a higher degree of protection. They feature 2 cable entries, fitted with cable gland, and are referenced F॰G॰NE.

Setting

Pressure switches with fixed differential (FTG)

Only the switching point on rising pressure is adjustable.

Switching point on rising pressure

The switching point on rising pressure (PH) is set by adjusting screw-nut 1.

Switching point on falling pressure

The switching point on falling pressure (PB) is not adjustable.
The difference between the tripping and resetting points of the contact is the natural differential of the switch (contact differential, friction, etc.).

Pressure switches with adjustable differential (FSG and FYG)

When setting the pressure switch, adjust the switching point on rising pressure (PH) first and then the switching point on falling pressure (PB).

Switching point on rising pressure

The switching point on rising pressure (PH) is set by adjusting screw-nut 1.
Switching point on falling pressure
The switching point on falling pressure (PB) is set by adjusting screw-nut 2.

Characteristics
Electromechanical pressure switches
XM Range
For power circuits, FTG, FSG and FYG Range

Environment characteristics						
Pressure switch type			FTG• FTG॰NE		FSG• and FYG• FSG॰NE and FYG॰NE	
Conformity to standards			C€, IEC/EN 60730			
Protective treatment			Standard version: "TC"			
Ambient air temperature		${ }^{\circ} \mathrm{C}$	For operation: 0... +45 . For storage: - $30 \ldots+80$			
Fluids controlled			Fresh water, sea water ($0 . \ldots+70^{\circ} \mathrm{C}$)			
Materials			Case: polystyrene, resistant to mechanical impact Component materials in contact with fluid: nylon 6/6, zinc plated steel, nitrile			
Operating position			All positions			
Electric shock protection			Class I conforming to IEC 536			
Degree of protection conforming to IEC/EN 60529	FTG•, FSG• and FYG•		IP 20			
	FTG•NE, FSG•NE and FYG•NE		IP 65			
Operating rate		Op. cycles/h	600			
Repeat accuracy			<2\%			
Fluid connection	F॰G 2, FYG•2		G 1/4 (BSP female) conforming to NF E 03-005, ISO 228			
	F•G 9		R 1/4 (BSP male) conforming to NF E 03-004, ISO 7			
Electrical connection	FTGe, FSGe and FYG•		Terminals. 2 cable entries, with grommet			
	FTG॰NE, FSG॰NE and FYG॰NE		Terminals. 2 entries incorporating 13P cable gland (DIN Pg 13.5)			
Contact block characteristics						
Rated operational characteristics			$\mathrm{le}=10 \mathrm{~A}, \mathrm{Ue}=\sim 250 \mathrm{~V}$ conforming to EN 60730-1			
Power ratings of controlled motors	Voltage		~2-pole 1-phase	~2-pole 3-phase	~2-pole 1-phase	~2-pole 3-phase
	110 V		0.75 kW (1 HP)	1.1 kW (1.5 HP)	0.75 kW (1 HP)	1.1 kW (1.5 HP)
	230 V		1.1 kW (1.5 HP)	1.5 kW (2 HP)	1.5 kW (2 HP)	2.2 kW (3 HP)
	400 V		1.5 kW (2 HP)	1.5 kW (2 HP)	1.5 kW (2 HP)	2.2 kW (3 HP)
Rated insulation voltage conforming to IEC/EN 60947-1		V	$\mathrm{Ui}=500$			
Rated impulse withstand voltage conforming to IEC/EN 60947-1		kV	U imp $=6$			
Type of contacts			12-pole 2 NC (4 terminal) contact, snap action			
Short-circuit protection			20 A cartridge fuse type gG			
Connection			Screw clamp terminals. Minimum clamping capacity: $1 \times 1 \mathrm{~mm}^{2}$, max: $2 \times 2 \mathrm{~mm}^{2}$			
Electrical durability at an operating rate of 600 operating cycles/hour		Op. cycles	40000		100000	

References, characteristics

Electromechanical pressure switches

 XM RangeFor power circuits, FTG Range
Size 4.6 bar (66.7 psi), fixed differential, for detection of a single threshold. Switches with 2-pole 2 NC contact. Degree of protection IP 20 or IP 65

Complementary characteristics not shown under general characteristics (page 87)

Natural differential (subtract from PH to give PB)	At low setting	1.1 bar (15.95 psi)	
	At middle setting	1.3 bar (18.85 psi)	
	At high setting	1.5 bar (21.75 psi)	
Maximum permissible pressure	Per cycle	5.75 bar (83.38 psi)	
	Accidental	8 bar (116 psi)	
Destruction pressure		20 bar (290 psi)	
Mechanical life		4×10^{5} operating cycles	
Cable entry		2 cable entries, with grommet	2 entries with 13P cable gland (DIN Pg 13.5)
Clamping capacity		-	9 to 13 mm
Pressure switch type		Diaphragm	

(1) Component materials of units in contact with the fluid, see page 87.

Operating curves

_Adjustable value
---- Non adjustable value

Electromechanical pressure switches

XM Range

For power circuits, FSG Range
Size 4.6 bar (66.7 psi), adjustable differential, for regulation between 2 thresholds. Switches with 2-pole 2 NC contact.
Degree protection IP 20 or IP 65

Fluid connection	G 1/4 (female)	R 1/4 (male)	G 1/4 (female)	R 1/4 (male)
Adjustable range of switching point (PH) (Rising pressure)	1.4...4.6 bar (20.3..66.7 psi)			
Degree of protection conforming to IEC/EN 60529	IP 20		IP 65	
References				
Fluids controlledFresh water, sea water, from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (1)	FSG2	FSG9	FSG2NE (2)	FSG9NE
Weight (kg)	0.340			

Complementary characteristics not shown under general characteristics (page 87)

Possible differential (subtract from PH to give PB)	Max. at low setting	2.1 bar (30.45 psi)	
	Max. at middle setting	2.2 bar (31.9 psi)	
	Max. at high setting	2.3 bar (33.35 psi)	
	Min. at low setting	1 bar (14.5 psi)	
	Min. at middle setting	1.1 bar (15.95 psi)	
	Min. at high setting	1.2 bar (17.4 psi)	
Maximum permissible pressure	Per cycle	5.75 bar (83.38 psi)	
	Accidental	8 bar (116 psi)	
Destruction pressure		$20 \mathrm{bar}(290 \mathrm{psi})$	
Mechanical life		1×10^{6} operating cycles	
Cable entry		2 cable entries, with grommet	2 entries with 13P cable gland (DIN Pg 13.5)
Clamping capacity		-	9 to 13 mm
Pressure switch type		Diaphragm	

(1) Component materials of units in contact with the fluid, see page 87.
(2) Variant: for a G $3 / 8$ female fluid entry that pivots throughout 360°, select the FSG2NEG.

Operating curves	Connections

References, characteristics

Electromechanical pressure switches

XM Range
For power circuits, FYG Range
Sizes 7 and 10.5 bar (101.5 and 152.3 psi), adjustable differential, for regulation between 2 thresholds. Switches with 2-pole 2 NC contact. Degree of protection IP 20 or IP 65

Fluid connection	G $1 / 4$ (female)

(1) Component materials of units in contact with the fluid, see page 87.
(2) Variant: for a 2.8 to 7 bar, IP 20, pressure switch with R $1 / 4$ (male) fluid entry, select the FYG29.
(3) Variant: for a 5.6 to 10.5 bar, IP 20, pressure switch with R $1 / 4$ (male) fluid entry, select the FYG39.

Electromechanical pressure switches
XM Range
For power circuits, FTG, FSG and FYG Range

FTG9NE, FSG9NE

FYG22NE, FYG32NE

Safety detection solutions
 Key-operated safety switches

Refer to standards
 EN/ISO 12100 and EN/ISO 14119
 IEC/ISO 13852 and ENIIEC 60204-1

Safety interlock switches

Control circuit categories

Safety of personnel

Safety of operation

Safety in use

Telemecanique Sensors XCS safety detection solutions conform to EN/ISO 12100 and EN/ISO 14119 standards regarding potentially hazardous machine functions. They meet more specifically the following requirements:

- Removable or movable protective guards must be used in conjunction with locking or interlocking devices,
- For high inertia machines (i.e. with long rundown time), an interlocking device must be used. With a long rundown time, the rundown time is greater than the time it takes for a person to reach the hazardous zone. The interlocking device helps ensure that the guard remains locked until the potentially hazardous movement has stopped.
As required by EN/ISO 12100 and EN/ISO 14119, safety interlock switches which are specifically designed for machine guarding applications provide an ideal solution for the locking or interlocking of movable guards associated with industrial machinery. They also meet the requirements of IEC/ISO 13852 and EN/IEC 60204-1. They contribute to the protection of operators working on potentially hazardous machines by breaking the start control circuit of the machine when a protective guard is opened or removed, using positive opening operation contacts, thus stopping the hazardous movement of the machine.
Removal/opening of the guard (after the hazardous movement has stopped) can either be:
- at the time the machine is switched off for low inertia machines (machines where the rundown time is less than the time it takes for the operator to access the hazardous zone), or
- delayed for high inertia machines (machines where the rundown time is greater than the time it takes for the operator to access the hazardous zone).

If used with a Schneider Electric safety control unit, the safety interlock switch enables designers to achieve PL=e, category 4 control systems with reference to EN/ISO 13849-1 and SIL CL3 with conformity to EN/IEC 62061. When used on their own or combined with another switch, they can achieve up to category 1,2 or 3 control circuits (except for RFID XCSR standalone models which can reach PLe-Cat. 4/SIL3 without safety control unit).
Safety related parts of control systems shall be developed taking into account the results of an appropriate Risk Assessment.

The start command for the machine can only be initiated following correct operation of the safety interlock switch.
On its release, the NC safety contacts are opened by positive action or, for coded magnetic switches, change state (this should be monitored using a Schneider
Electric safety control unit). RFID XCSR safety switches have 2 OSSDs (Output Signal Switching Devices) which are NC when the guard is closed.

The safety interlock switches incorporate slow break or snap action contacts with positive opening operation (except for coded magnetic switches where this is not possible). For mechanical safety interlock switches, on closing of the guard the actuating key fitted to it enters the head of the switch, operates the multiple interlock device and closes the NC contacts. For coded magnetic switches, the presence of the magnet causes the contacts to change state. For RFID XCSR safety switches, the 2 OSSDs change from ON to OFF state when the guard is being opened.

In order to compensate for mechanical clearance, vibration, etc., all safety interlock switches are designed to accept a few millimeters of misalignment between the actuating key and the switch, or between the magnet and the sensor part for coded magnetic switches, or between the transponder and the reader for RFID XCSR safety switches.

Mechanically, magnetically or RFID-actuated safety interlock switches are designed to be operated by specific actuating keys so that they cannot be defeated in a simple manner using common tools (rods, metal plates, simple magnets, etc.). When loosening the fixing screws for re-orientation of the turret head on safety interlock switches, the head itself remains attached to the switch body and the contact states remain unchanged.
All safety interlock switches and safety limit switches are designed to avoid any adjustments in the head setting, removal of the actuating key or access to the safety contacts without using the appropriate tool.
There are various methods for obtaining a higher level of tamperproofing, for example:

- using a cage device to help prevent the insertion of a spare actuating key or magnet, or any other foreign body
- fixing the actuating key or coded magnet to the guard by means that make it very difficult to remove (riveting or welding)
- using RFID unique coding XCSR safety switches

Safety detection solutions

Key-operated safety switches

XCSPA and XCSTA plastic, turret head
1 or 2 cable entries

References of switches without actuating key (4) Θ NC contact with positive opening operation) with 1 or 2 cable entries tapped
Pg 11 or 1/2" NPT
To order a switch with 1 or 2 cable entries for Pg 11 cable gland (clamping capacity 7 to 10 mm), replace the last number (2) with $\mathbf{1}$ in the selected reference Example: XCSPA592 becomes XCSPA591 (some Pg 11 references may not be available),
To order a switch with 1 or 2 cable entries for 1/2" NPT conduit (one Pg 11 tapped entry fitted with DE9RA1012 metal adapter), replace the last number (2) with $\mathbf{3}$ in the selected reference. Example: XCSTA592 becomes XCSTA593 (some 1/2" NPT references may not be available).
Complementary characteristics not shown under general characteristics (page 92)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$			
Resistance to forcible withdrawal of actuating key	XCSPA, XCSTA: 10 N (50 N using actuating keys XCSZ12 or XCSZ13 together with guard retaining device XCSZ21)			
Mechanical durability	XCSPA, XCSTA: > 1 million operating cycles			
Maximum operating rate	For maximum durability: 600 operating cycles per hour			
Minimum force for positive opening	$\geqslant 15 \mathrm{~N}$			
Cable entry	XCSPA: 1 entry tapped M16 $\times 1.5$ for ISO cable gland. XCSTA: 2 entries tapped M16 $\times 1.5$ for ISO cable gland.			
Materials	Body and head: polyamide PA66, fibreglass impregnated			
References of accessories				
	Description	For use with	Unit reference	Weight kg
	Blanking plugs for operating head slot (Sold in lots of 10)	XCSPA, XCSTA	XCSZ28	0.050
	Padlocking device to help prevent insertion of actuating key, for up to 3 padlocks (padlocks not included)	XCSPA, XCSTA	XCSZ91	0.053
XCSZ200	Actuating key centering device (3) (Fixing screws included)	XCSPA, XCSTA	XCSZ200	0.022

[^13]References (continued), dimensions

Safety detection solutions
Key-operated safety switches
XCSPA and XCSTA plastic, turret head (1)
1 or 2 cable entries

References of actuating keys and guard retaining device
$\left.\begin{array}{l|l|l|l|l|l|l}\text { Actuating key with } \\ \text { wide fixing (1) }\end{array} \quad \begin{array}{l}\text { Pivoting } \\ \text { actuating key }\end{array} \begin{array}{l}\text { Right-angled } \\ \text { actuating key }\end{array} \quad \begin{array}{l}\text { Guard retaining } \\ \text { device (2) }\end{array}\right]$
(1) 2 actuating key lengths, XCSZ12: $L=40 \mathrm{~mm}, X C S Z 15: L=29 \mathrm{~mm}$.
(2) Only for use with XCSPA and XCSTA key-operated switches (without XCSZ200 actuating key centering device) used in conjunction with XCSZ12, XCSZ13 or XCSZ15 actuating keys.

Safety detection solutions

Key-operated safety switches

XCSPA and XCSTA plastic, turret head
1 or 2 cable entries

Dimensions (continued)

xcsz11

(1) Adapter (included with XCSZ11 actuating key) for replacing, without drilling an additional fixing hole, a legacy XCKP/T key-operated switch with XCKY01 actuating key by an XCSTA key-operated switch with XCSZ11 actuating key. \varnothing a: 2 elongated holes $\varnothing 4.7 \times 10$
\varnothing b: 1 elongated hole for M4 or M4.5 screw

XCSZ13

$\bar{\varnothing}: 2$ elongated holes $\varnothing 4.7 \times 10$

$\mathrm{R}=$ minimum radius

Setting-up, schemes

Safety detection solutions
Key-operated safety switches
XCSPA and XCSTA plastic, turret head
1 or 2 cable entries

Setting-up Functional diagrams XCSPA1•0

Schemes Note: These schemes are given as examples only, the designer should refer to the relevant safety standards for guidance.

Wiring to PL=e, category 4 conforming to EN/

ISO 13849-1 and

 SIL CL3 conforming to EN/IEC 62061 Wiring method used in conjunction with a safety control unit(The key-operated switch should be used in conjunction with a safety limit switch to give electrical/mechanical redundancy)
Method for machines with quick rundown time (low inertia)

Locking of actuating key and operation in positive mode associated with a safety control unit.

Wiring to PL=b, category 1 conforming to EN/ISO 13849-1
Example with 3-pole $1 \mathrm{NC}+2 \mathrm{NO}$ contact and protection fuse to help prevent shunting of the NC contact, due to either cable damage or tampering.

(1) Signaling contact.

Emergency stop rope pull switches are designed to:
■ avert hazards (dangerous phenomena) at the earliest possible moment, or to reduce risks which could cause injury to persons or damage either to machines or work in progress

- be tripped by a single human action when a normal emergency stop function is not available
- trip in the event of the rope pull breaking

Emergency stop rope pull switches are essential in premises and on machines that are potentially dangerous when operating. The operator must be able to trigger the stop instruction at any point within their working area.

Application examples: woodworking machines, shears, conveyor systems, printing machines, textile machines, rolling mills, test laboratories, paint shops, surface treatment works, etc.

XY2CJ compact range

Safety detection solutions
 Safety detection solutions
 XY2C range

Safety detection solutions
 Emergency stop rope pull switches XY2C range

Installation

Description of a typical installation for XY2CJ

1 Mounting support
4 Pulleys and pulley supports
5 End spring
7 Switch adjustment
First cable support
6 Cable grips

8 Emergency stop
9 Cable

Notes regarding installation

■ XY2CJ emergency stop rope pull switches can be fitted with trip indicators (mechanical indicators for XY2CJ).

- The cable tension can be adjusted using:
\square a turnbuckle to be ordered separately (see page 102)
\square a quick tensioner optional for XY2CJ
- The use of an end spring is mandatory for conveyor system applications to allow operation of the emergency stop in the event of the cable being pulled towards the switch.

■ It is essential that pulleys be used with cables that deviate from a straight run (within the permissible angles. Refer to the mounting instructions).

Basic principles

Positive operation: running condition

Latching: stop instruction given (tripped)

Resetting: stop condition (awaiting reset/restart)

1 The switches incorporate positive opening operation contacts, the tripping of the switch being made with positive action.

2 The switch latches in the tripped position (NC safety contact(s) open). The function of the NO contact is purely for signaling.

3 The switches incorporate a reset button, which re-closes the safety contact. The machine must only be restarted by manual operation of a control device within the machine start circuit, remote to the emergency stop.

Characteristics

Safety detection solutions
 Emergency stop rope pull switches XY2CJ range

Environment		
Conforming to standards	Products	EN/IEC 60947-5-5, EN/ISO 13850, UL 508 and CSAC 22-2 no. 14
	Machine assemblies	EN/IEC 60204-1, Machinery directive: 2006/42/EC Work equipment directive: 2009/104/EC
Product certifications		XY2CJ: UL (NISD) - CSA, CCC, EAC
Maximum safety level (1)		PLe, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		XY2CJ: 500,000 (Values given for a service life of 20 years but may be limited by contact and mechanical wear)
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$
	For storage	$-40 . . .+70^{\circ} \mathrm{C}$
Vibration resistance		XY2CJ: $10 \mathrm{gn} \mathrm{(10...150} \mathrm{Hz)}$
Shock resistance		XY2CJ: 50 gn (duration 11 ms) conforming to EN/IEC 60068-2-27
Electric shock protection		Class I conforming to IEC 61140
Degree of protection		XY2CJ: IP 66 and IP 67 conforming to IEC 60529
Materials		XY2CJS: Zamak body, polyamide head, zinc-plated steel cover XY2CJL, XY2CJR: Zamak body and head, zinc-plated steel cover
Mechanical life (no. of operating cycles)		XY2CJ: 100,000
Length of protected zone		$\begin{aligned} & \text { XY2CJS: } \leqslant 20 \mathrm{~m} \\ & \text { XY2CJR and XY2CJL: } \leqslant 30 \mathrm{~m} \end{aligned}$
Distance between cable supports		XY2CJ: 5 m
Cable entries		XY2CJ: Tapped entries for ISO M20, Pg 13.5 or 1/2" NPT cable gland See dimensions on page 104.

(1) When the emergency stop rope pull switch is used with an appropriate and correctly connected control system. Only models with 2 NC contacts can be used with an emergency stop monitoring safety relay.

Safety detection solutions

Emergency stop rope pull switches

 XY2CJ rangeContact block characteristics

Safety detection solutions
 Emergency stop rope pull switches XY2CJ range

(1) See separate parts on page 102.
(2) For ISO M20 tapped cable entry version, add H 29 to the end of the selected reference. For example: XY2CJS15 becomes XY2CJS15H29.
(3) For 1/2" NPT tapped cable entry version, add H 7 to the end of the selected reference. For example: XY2CJS19 becomes XY2CJS19H7.

Safety detection solutions
Emergency stop rope pull switches
XY2C range

	Separate parts Description Galvanized cables with red sheath	Diameter mm	For use with

XY2CZ210

Description	Type	For use with	Unit reference	Weight kg
Quick tensioner	-	XY2CJ	XY2CZ210	0.051
Turnbuckle	$\begin{aligned} & \text { M6 x } 60 \\ & + \text { locknut } \end{aligned}$	XY2CJ	XY2CZ402	0.060
	M8×70 + locknut	XY2CJ	XY2CZ404	0.100

XY2CZ402
XY2CZ404

Safety detection solutions
 Emergency stop rope pull switches XY2C range

	Separate parts (continued)	For use with	

Safety detection solutions
 Emergency stop rope pull switches XY2C range

(1) Tapped entries for no. 13 cable gland (Pg 13.5). For ISO M20, the reference becomes XY2CJeゃ॰H29. For 1/2"NPT, the reference becomes XY2CJeゃ॰H7. \varnothing : 4 elongated holes $\varnothing 6 \mathrm{~mm}$.

Accessories

Quick tensioners
XY2CZ210

[^14]| XC | |
| :---: | :---: |
| XCE110C | 17 |
| XCE102C | 17 |
| XCE103C | 17 |
| XCE118C | 18 |
| XCE119C | 18 |
| XCE145C | 18 |
| XCE146C | 18 |
| XCE154C | 18 |
| XCE106C | 19 |
| XCE181C | 19 |
| XCJ110C | 13 |
| XCJ102C | 13 |
| XCJ103C | 13 |
| XCJ125C | 14 |
| XCJ126C | 14 |
| XCJ127C | 14 |
| XCJ128C | 14 |
| XCJ121C | 14 |
| XCKN2110P20 | 23 |
| XCKN2102P20 | 23 |
| XCKN2103P20 | 23 |
| XCKN2121P20 | 23 |
| XCKN2127P20 | 23 |
| XCKN2510P20 | 23 |
| XCKN2502P20 | 23 |
| XCKN2503P20 | 23 |
| XCKN2521P20 | 23 |
| XCKN2527P20 | 23 |
| XCKN2710P20 | 23 |
| XCKN2721P20 | 23 |
| XCKN2910P20 | 23 |
| XCKN2902P20 | 23 |
| XCKN2903P20 | 23 |
| XCKN2921P20 | 23 |
| XCKN2118P20 | 24 |
| XCKN2145P20 | 24 |
| XCKN2139P20 | 24 |
| XCKN2149P20 | 24 |
| XCKN2108P20 | 24 |
| XCKN2106P20 | 24 |
| XCKN2518P20 | 24 |
| XCKN2545P20 | 24 |
| XCKN2539P20 | 24 |
| XCKN2549P20 | 24 |
| XCKN2718P20 | 24 |
| XCKN2918P20 | 24 |
| XCKN2945P20 | 24 |
| XCKN2949P20 | 24 |

XS	
XS108BHNAL2	29
XS108BHNAM8	29
XS108BHPAL2	29
XS108BHPAM8	29
XS108BHPAM12	29
XS108BHPBL2	29
XS108BHPBM8	29
XS108BHPBM12	29
XS108BLNAL2	29

XS108BLNAM12	29	XS208BLPAM12	32
XS108BLPAL2	29	XS212BLNAL2	32
XS108BLPAL5	29	XS212BLNAL7	32
XS108BLPAM8	29	XS212BLNAM12	32
XS108BLPAM12	29	XS212BLNBL2	32
XS112BHNAL2	29	XS212BLPAL2	32
XS112BHNAM12	29	XS212BLPAL5	32
XS112BHNBL2	29	XS212BLPAM12	32
XS112BHNBM12	29	XS212BLPBL2	32
XS112BHPAL2	29	XS212BLPBL5	32
XS112BHPAL5	29	XS218BLNAL2	33
XS112BHPAM12	29	XS218BLNAL5	33
XS112BHPBL2	29	XS218BLNAL7	33
XS112BHPBM12	29	XS218BLNAM12	33
XS112BLNAL2	32	XS218BLNBL2	33
XS112BLNAM12	32	XS218BLPAL2	33
XS112BLPAL2	32	XS218BLPAL5	33
XS112BLPAL3	32	XS218BLPAM12	33
XS112BLPAL5	32	XS218BLPBL2	33
XS112BLPAM12	32	XS230BLNAL2	33
XS112BLPBL2	32	XS230BLNAL7	33
XS112BLPBM12	32	XS230BLNAM12	33
XS118BHNAL2	29	XS230BLPAL2	33
XS118BHNAL5	29	XS230BLPAL5	33
XS118BHNAM12	29	XS230BLPAM12	33
XS118BHNBL2	29	XS230BLPBL2	33
XS118BHNBM12	29	XSZB108	29
XS118BHPAL2	29		4
XS118BHPAL5	29	XSZB112	29 34
XS118BHPAM12	29	XSZB118	29
XS118BHPBL2	29		34
XS118BHPBM12	29	XSZB130	29
XS118BLNAL2	33		34
XS118BLNAL5	33	XZCPV0566L5	29
XS118BLNAM12	33		
XS118BLPAL2	33	XZCPV0566L10	29 34
XS118BLPAL5	33	XZCPV1141L5	29
XS118BLPAM12	33		34
XS118BLPBL2	33	XZCPV1141L10	29
XS118BLPBM12	33		34
XS130BHNAL2	29		
XS130BHNAM12	29	XU	
XS130BHNBL2	29	XUB4APANM12	66
XS130BHNBM12	29	XUB4APAWM12	66
XS130BHPAL2	29	XUB4ANANM12	66
XS130BHPAL5	29	XUB4ANAWM12	66
XS130BHPAM12	29	XUB4APBNM12	66
XS130BHPBL2	29	XUB4APBWM12	66
XS130BHPBM12	29	XUB4ANBNM12	66
XS130BLNAL2	33	XUB4ANBWM12	66
XS130BLNAL3	33	XUB5APANM12	66
XS130BLNAM12	33	XUB5APAWM12	66
XS130BLPAL2	33	XUB5ANANM12	66
XS130BLPAM12	33	XUB5ANAWM12	66
XS130BLPBL2	33	XUB5APBNM12	66
XS130BLPBM12	33	XUB5APBWM12	66
XS208BLNAL2	32	XUB5ANBNM12	66
XS208BLPAL2	32	XUB5ANBWM12	66
XS208BLPAL5	32	XUB9APANM12	66
XS208BLPAM8	32	XUB9APAWM12	66

XUB9ANANM12	66	XUB2BNANM12R	68
XUB9ANAWM12	66	XUB2BNAWM12R	68
XUB9APBNM12	66	XUB2BPBNM12R	68
XUB9APBWM12	66	XUB2BPBWM12R	68
XUB9ANBNM12	66	XUB2BNBNM12R	68
XUB9ANBWM12	66	XUB2BNBWM12R	68
XUB1APANM12	66	XUM2APXBL2	53
XUB1APAWM12	66	XUM2APXBM8	53
XUB1ANANM12	66	XUM2ANXBL2	53
XUB1ANAWM12	66	XUM2ANXBM8	53
XUB1APBNM12	66	XUM2AKXBL2T	53
XUB1APBWM12	66	XUM2AKXBM8T	53
XUB1ANBNM12	66	XUM2APXBL2R	53
XUB1ANBWM12	66	XUM2APXBM8R	53
XUB2AKSNM12T	66	XUM2ANXBL2R	53
XUB2AKSWM12T	66	XUM2ANXBM8R	53
XUB2APANM12R	66	XUM9APXBL2	54
XUB2APAWM12R	66	XUM9APXBM8	54
XUB2ANANM12R	66	XUM9ANXBL2	54
XUB2ANAWM12R	66	XUM9ANXBM8	54
XUB2APBNM12R	66	XUM8APXBL2	54
XUB2APBWM12R	66	XUM8APXBM8	54
XUB2ANBNM12R	66	XUM8ANXBL2	54
XUB2ANBWM12R	66	XUM8ANXBM8	54
XUB4BPANM12	68	XUM4APXBL2	55
XUB4BPAWM12	68	XUM4APXBM8	55
XUB4BNANM12	68	XUM4ANXBL2	55
XUB4BNAWM12	68	XUM4ANXBM8	55
XUB4BPBNM12	68	XUM6APXBL2	55
XUB4BPBWM12	68	XUM6APXBM8	55
XUB4BNBNM12	68	XUM6ANXBL2	55
XUB4BNBWM12	68	XUM6ANXBM8	55
XUB5BPANM12	68	XUM5APXBL2	55
XUB5BPAWM12	68	XUM5APXBM8	55
XUB5BNANM12	68	XUM5ANXBL2	55
XUB5BNAWM12	68	XUM5ANXBM8	55
XUB5BPBNM12	68	XUZ2001	66
XUB5BPBWM12	68		68
XUB5BNBNM12	68	XUZ2003	66
XUB5BNBWM12	68		68
XUB9BPANM12	68	XUZA118	66
XUB9BPAWM12	68		68
XUB9BNANM12	68	XUZA218	66
XUB9BNAWM12	68		68
XUB9BPBNM12	68	XUZASM04	56
XUB9BPBWM12	68	XUZASM03	56
XUB9BNBNM12	68	XUZASM02	56
XUB9BNBWM12	68	XUZA50	56
XUB1BPANM12	68	XUZASM05	56
XUB1BPAWM12	68	XUZB2003	66
XUB1BNANM12	68		68
XUB1BNAWM12	68	XUZC100	54
XUB1BPBNM12	68	XUZC50	54
XUB1BPBWM12	68		66
XUB1BNBNM12	68		68
XUB1BNBWM12	68	XUZC24	54
XUB2BKSNM12T	68	XUZC60S11	54
XUB2BKSWM12T	68	XUZC39	54
XUB2BPANM12R	68	XUZDVM05	53
XUB2BPAWM12R	68	XUZDVM10	53

XUZDVM20	53
XUZDHM05	53
XUZDHM10	53
XUZDHM20	53
XUZDRM05	53
XUZDRM10	53
XUZDRM20	53

XM

XMLPM00GD21F	72
XMLPM00GC21F	72

XMLPM00GL21F	72
XMLPM00GD71F	72

XMLPM00GC71F $\quad 72$

XMLPM00GL71F	72
XMLPM00GD11F	72

XMLPM00GC11F $\quad 72$

XMLPMOOGD2BF	72
XMLPMOOGC2BF	72

XMLPM00GC2BF	72
XMLPM00GD7BF	72

XMLPM00GC7BF $\quad 72$

XMLPM01GD21F	72
XMLPM01GC21F	72

XMLPM01GD71F 72

XMLPM01GC71F	72
$X M L P M 05 G D 21 F$	72

XMLPM05GC21F 72

XMLPM05GD71F	72
XMLPM05GC71F	72

XMLPM09BD21F	73
$X M L P M 09 B C 21 F$	73

XMLPM09BD71F	73

XMLPM09BC71F	73
XMLPM09BD11F	73

XMLPM25BD21F 73

XMLP250MD21F	74
$X M L P 250 M C 21 F$	74

XMLP250MC21F	74
XMLP250MD71F	74

XMLP250MC71F $\quad 74$

XMLP250MD11F	74
XMLP250MC11F	74

XMLP500MD21F	74

XMLP500MC21F	74
XMLP500MD71F	74

XMLP500MC71F $\quad 74$
XMLP500MD11F $\quad 74$

XMLP500MC11F	74
XMLP001GD21F	74

XMLP001GC21F 74
XMLP001GL21F $\quad 74$
XMLP001GD71F 74

XMLP001GC71F	74
XMLP001GL71F	74

XMLP001GD11F 74
XMLP001GC11F 74
XMLP001GD2BF $\quad 74$

XMLP001GC2BF	74

XMLP001GC7BF $\quad 74$

XMLP2D5GD21F

XMLP2D5GC21F	75
XMLP2D5GL21F	75
XMLP2D5GD71F	75
XMLP2D5GC71F	75
XMLP2D5GL71F	75
XMLP2D5GD11F	75
XMLP2D5GC11F	75
XMLP004GD21F	75
XMLP004GC21F	75
XMLP004GD71F	75
XMLP004GC71F	75
XMLP004GD11F	75
XMLP004GC11F	75
XMLP006GD21F	75
XMLP006GC21F	75
XMLP006GL21F	75
XMLP006GD71F	75
XMLP006GC71F	75
XMLP006GL71F	75
XMLP006GD11F	75
XMLP006GC11F	75
XMLP010BD21F	76
XMLP010BC21F	76
XMLP010BD71F	76
XMLP010BC71F	76
XMLP010BD11F	76
XMLP010BC11F	76
XMLP010BD270	76
XMLP010BC270	76
XMLP010BD290	76
XMLP010BC290	76
XMLP010BD790	76
XMLP010BC790	76
XMLP010BD190	76
XMLP016BD21F	76
XMLP016BC21F	76
XMLP016BD71F	76
XMLP016BC71F	76
XMLP016BD11F	76
XMLP016BC11F	76
XMLP016BD270	76
XMLP016BC270	76
XMLP016BD290	76
XMLP016BC290	76
XMLP016BD790	76
XMLP016BD190	76
XMLP025BD21F	77
XMLP025BC21F	77
XMLP025BD71F	77
XMLP025BC71F	77
XMLP025BD11F	77
XMLP025BC11F	77
XMLP025BD270	77
XMLP025BC270	77
XMLP025BD770	77
XMLP025BD290	77
XMLP025BC290	77
XMLP025BD790	77
XMLP040BD21F	77
XMLP040BC21F	77

XMLP040BD71F	77
XMLP040BC71F	77
XMLP040BD11F	77
XMLP040BC11F	77
XMLP040BD270	77
XMLP040BC270	77
XMLP040BD290	77
XMLP040BC290	77
XMLP040BD790	77
XMLP040BD190	77
XMLP060BD21F	78
XMLP060BC21F	78
XMLP060BD71F	78
XMLP060BC71F	78
XMLP060BD11F	78
XMLP060BC11F	78
XMLP060BD270	78
XMLP060BD290	78
XMLP060BC290	78
XMLP060BD790	78
XMLP100BD21F	78
XMLP100BC21F	78
XMLP100BD71F	78
XMLP100BC71F	78
XMLP100BD11F	78
XMLP100BC11F	78
XMLP160BD21F	79
XMLP160BC21F	79
XMLP160BD71F	79
XMLP160BC71F	79
XMLP160BD11F	79
XMLP250BD21F	79
XMLP250BC21F	79
XMLP250BD71F	79
XMLP250BC71F	79
XMLP250BD11F	79
XMLP250BC11F	79
XMLP400BD21F	79
XMLP400BC21F	79
XMLP400BD71F	79
XMLP400BC71F	79
XMLP400BD11F	79
XMLP400BC11F	79
XMLP600BD21F	79
XMLP600BC21F	79
XMLP600BD71F	79
XMLP600BC71F	79
XMLP600BD11F	79
XMLPM00RD23F	80
XMLPM00RC23F	80
XMLPM00RP23F	80
XMLPM00RD73F	80
XMLPM00RC73F	80
XMLPM00RP73F	80
XMLPM00RD13F	80
XMLPM00RC13F	80
XMLPM00RP13F	80
XMLPM15RD23F	80
XMLPM15RC23F	80
XMLPM15RP23F	80

XMLPM15RD73F	80
XMLPM60RD23F	80
XMLPM60RC23F	80
XMLPM60RP23F	80
XMLPM60RD73F	80
XMLP015RD23F	81
XMLP015RC23F	81
XMLP015RP23F	81
XMLP015RD73F	81
XMLP015RC73F	81
XMLP015RP73F	81
XMLP030RD23F	81
XMLP030RC23F	81
XMLP030RP23F	81
XMLP030RD73F	81
XMLP030RC73F	81
XMLP030RP73F	81
XMLP050RD23F	81
XMLP050RC23F	81
XMLP050RP23F	81
XMLP050RD73F	81
XMLP100RD23F	81
XMLP100RD73F	81
XMLP100PD230	82
XMLP100PP230	82
XMLP100PD730	82
XMLP100PP730	82
XMLP100PD130	82
XMLP100PP130	82
XMLP150PD230	82
XMLP150PP230	82
XMLP150PD730	82
XMLP150PP730	82
XMLP150PD130	82
XMLP200PD230	82
XMLP200PP230	82
XMLP200PD730	82
XMLP200PP730	82
XMLP200PD130	82
XMLP300PD230	83
XMLP300PP230	83
XMLP300PD730	83
XMLP300PP730	83
XMLP300PD130	83
XMLP300PP130	83
XMLP600PD230	83
XMLP600PP230	83
XMLP600PD730	83
XMLP600PP730	83
XMLP600PD130	83
XMLP600PP130	83
XMLP1K0PD230	83
XMLP1K0PP230	83
XMLP1K0PD730	83
XMLP1K0PP730	83
XMLP1K0PD130	83
XMLP2K0PD230	84
XMLP2K0PD730	84
XMLP2K0PD130	84
XMLP3K0PD230	84

XMLP3K0PP230	84
XMLP3K0PD730	84
XMLP3K0PP730	84
XMLP3K0PD130	84
XMLP6K0PD230	84
XMLP6K0PD730	84
XMLP6K0PP730	84
XMLP6K0PD130	84
XMLP6K0PP130	84
ZMLPA1P2SH	85
ZMLPA1P2SW	85
ZMLPA1N2SH	85
ZMLPA1N2SW	85
ZMLPA2P0SH	85
ZMLPA2N0SH	85
XMLZL016	85
XZCC12FDM40B	85
XZCC12FCM40B	85
XZCC43FCP40B	85
XMLZL016	85
XZCC12FDM40B	85
XZCC12FCM40B	85
XZCC43FCP40B	85
XZCP1141L2	85
XZCPV1141L2	85
XZCP1141L5	85
XZCPV1141L5	85
XZCP1141L10	85
XZCPV1141L10	85
XZCP1241L2	85
XZCPV1241L2	85
XZCP1241L5	85
XZCPV1241L5	85
XZCP1241L10	85
XZCPV1241L10	85
XMLEZM01	85
XMLEZ001	85
XMLEZ010	85
XMLEZ025	85
XMLEZ060	85
XMLEZ100	85
XMLEZ250	85
XMLEZ600	85
XMLZL017	85
XMLEZM01	85
XMLEZ001	85
XMLEZ010	85
XMLEZ025	85
XMLEZ060	85
XMLEZ100	85
XMLEZ250	85
XMLEZ600	85
XMLZL017	85
F	
FTG2	88
FTG9	88
FTG2NE	88
FTG9NE	88
FSG2	89

FSG9	89
FSG2NE	89
FSG9NE	89
FYG22	90
FYG22NE	90
FYG32	90
FYG32NE	90

XY	
XY2CJS15	101
XY2CJS17	101
XY2CJS19	101
XY2CJR15	101
XY2CJR17	101
XY2CJR19	101
XY2CJL15	101
XY2CJL17	101
XY2CJL19	101
XY2CZ301	102
XY2CZ3015	102
XY2CZ3020	102
XY2CZ302	102
XY2CZ303	102
XY2CZ210	102
XY2CZ402	102
XY2CZ404	102
XY2CZ503	103
XY2CZ513	103
XY2CZ523	103
XY2CZ524	103
XY2CZ601	103
XY2CZ611	103
XY2CZ602	103
XY2CZ705	103
XY2CZ715	103
XY2CZ708	103
XY2CZ718	103
XY2CZ701	103
XY2CZ704	103
XY2CZ703	103
XY2CZ9310	103
XY2CZ9315	103
XY2CZ9320	103
XY2CZ9330	103
XY2CZ9425	103

The information provided in this catalogue contains description of products sold by TMSS France, its subsidiaries and other affiliated companies ('Offer') with technical specifications and technical characteristics of the performance of the corresponding Offer.

The content of this document is subject to revision at any time without notice due to continued progress in methodology, design and manufacturing.
To the extent permitted by applicable law, no responsibility or liability is assumed by TMSS France, its subsidiaries and other affiliated companies for any type of damage arising out of or in connexion with (a) informational content of this catalogue not conforming with or exceeding the technical specifications, or (b) any error contained in this catalogue, or (c) any use, decision, act or omission made or taken on the basis of or in reliance on any information contained or referred to in this catalogue.

NEITHER TMSS FRANCE, ITS SUBSIDIARIES, NOR ITS OTHER AFFILIATES, AS THE CASE MAYBE, MAKE NO WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO WHETHER THIS CATALOGUE OR ANY INFORMATION CONTAINED THEREIN SUCH AS PRODUCTS WILL MEET REQUIREMENTS, EXPECTATIONS OR PURPOSE OF ANY PERSON MAKING USE THEREOF.

Telemecanique ${ }^{\text {TM }}$ Sensors is a trademark of Schneider Electric Industries SAS used under license by TMSS France. Any other brands or trademarks referred to in this catalogue are property of TMSS France or, as the case may be, of its subsidiaries or other affiliated companies. All other brands are trademarks of their respective owners.

This catalogue and its content are protected under applicable copyright laws and provided for informative use only.
No part of this catalogue may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of TMSS France. Copyright, intellectual, and all other proprietary rights in the content of this catalogue (including but not limited to audio, video, text, and photographs) rests with TMSS France, its subsidiaries, and other affiliated companies or its licensors. All rights in such content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.

As standards, specifications and design change from time to time, please ask for confirmation of the information given in this publication.
©2024, TMSS France, All Rights Reserved.

TMSS France SAS

Share capital: $366931214 €$
Tour Eqho, 2 avenue Gambetta
92400 Courbevoie - France
908125255 RCS Nanterre

[^0]: (1) 90° max.
 (2) 16.5 max.
 (3) $2 \times \varnothing 4.2$

[^1]: the end of product reference. Example XCE118CTQ.
 Obviously the indivisible order quantity for this version is 10.

[^2]: - pick-up points

[^3]: (1) Detection curves, see page 37.

[^4]: Wiring sensors to devices with mechanical contact
 2 and 3-wire type sensors

 - No specific restrictions.
 \square For these sensors, the supply and output circuits are electrically separate.
 \square The sensor/relay contact galvanic isolation is 1500 to 2500 V , depending on the model.
 \square The maximum voltage, depending on the model, across each contact is $\sim 250 \mathrm{~V}$.

[^5]: (1) Beam break input on thru-beam transmitter only

[^6]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference.

 For example, XMLPM00GD21F becomes XMLPM00GD21FQ.

[^7]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference.

 For example, XMLPM09BD21F becomes XMLPM09BD21FQ.

[^8]: （1）Sold in lots of 25：add the letter Q to the end of the selected reference．
 For example，XMLP004GD71F becomes XMLP004GD71FQ．

[^9]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference. For example, XMLP040BD21F becomes XMLP040BD21FQ.

[^10]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference.

 For example, XMLP250BD21F becomes XMLP250BD21FQ.

[^11]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference.

 For example, XMLP030RD73F becomes XMLP030RD73FQ.

[^12]: (1) Sold in lots of 25: add the letter Q to the end of the selected reference.

 For example, XMLP100PD230 becomes XMLP100PD230Q.

[^13]: (1) Head adjustable in 90° steps through 360°. Blanking plug for operating head slot included with switch.
 (2) Schematic diagrams shown represent the contact states while the actuating key is inserted in the head of the switch.
 (3) Not for use with XCSZ91.
 (4) Actuating keys to be ordered separately (see page 94)

 Other versions: please consult our Customer Care Center.

[^14]: （1） 3 untapped holes for no． 13 （Pg 13．5）or ISO M20 cable gland．For 1／2＂NPT，the reference becomes XY2CEゃゃ०H7 or XY2CED•e०H7

